• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume de sólido

Volume de sólido

Mensagempor Manoella » Seg Fev 21, 2011 23:41

Como faço para encontrar o volume de revolução da região R em torno do eixo indicado:

R= {(x,y) \epsilonIR tal que 0 \leq x \leq\pi y \leq cox \frac{x}{2}}: o eixo é 0y
Aguardo ajuda.
Manoella
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Dez 16, 2010 09:30
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Volume de sólido

Mensagempor LuizAquino » Ter Fev 22, 2011 11:38

Manoella escreveu:Como faço para encontrar o volume de revolução da região R em torno do eixo indicado:

R= \{(x,y) \in \mathbb{R}^2 | 0 \leq x \leq\pi,\,y \leq \cos \frac{x}{2}\}: o eixo é 0y


A situação está ilustrada na figura abaixo.
volume.png
volume.png (6.72 KiB) Exibido 2072 vezes


Girando a região R ao redor do eixo y, o volume V gerado possui cada seção transversal dada por um círculo de raio x. Sabemos que se y = \cos \frac{x}{2}, então x = 2\cos^{-1} y (onde \cos^{-1} representa a função inversa do cosseno, isto é, o arco-cosseno). Portanto, a área de cada seção transversal será dada por A(y)=4(\cos^{-1}y)^2\pi.

Dessa maneira, o volume do sólido será dado por:
V = \int_0^1 A(y)\,dy = 4\pi\int_0^1 (\cos^{-1}y)^2\,dy

O maior trabalho será resolver essa integral. Você pode começar fazendo por partes:
u = \cos^{-1} y \; \Rightarrow \; du = -\frac{1}{\sqrt{1-y^2}}\,dy

dv = \cos^{-1} y \, dy\; \Rightarrow \; v =  y\cos^{-1}y - \sqrt{1-y^2}\,dy

V = 4\pi \int (\cos^{-1} y)^2 \,dy = 4\pi(\cos^{-1} y)(y\cos^{-1}y - \sqrt{1-y^2}) - 4\pi\int  \left(-\frac{1}{\sqrt{1-y^2}}\right)(y\cos^{-1}y - \sqrt{1-y^2})\, dy

Arrumando a segunda integral (que eu vou chamar de I), nós temos:
I = \int  \left(-\frac{y\cos^{-1}y}{\sqrt{1-y^2}}\right) + 1 \, dy = - \int  \left(\frac{y\cos^{-1}y}{\sqrt{1-y^2}}\right)\, dy + \int 1 \, dy = y - \int  \left(\frac{y\cos^{-1}y}{\sqrt{1-y^2}}\right)\, dy

Para resolver a outra integral que compõe I, devemos usar substituição:
w = \cos^{-1}y \, \Rightarrow \, dw = -\frac{1}{\sqrt{1-y^2}}dy

Lembre que se w = \cos^{-1}y, então \cos w = y.

Desse modo, temos:
\int  \left(\frac{y\cos^{-1}y}{\sqrt{1-y^2}}\right)\, dy = - \int w\cos w\, dw = -(w\sin w + \cos w) = -\cos^{-1}y\sin (\cos^{-1}y) - \cos (\cos^{-1}y) = -\cos^{-1}y\sqrt{1-y^2} - y

Observação: Faça a integral \int w\cos w\, dw por partes. Além disso, lembre-se que \sin (\cos^{-1}y) = \sqrt{1- [\cos(\cos^{-1} y)]^2} = \sqrt{1- y^2}.

Sendo assim, voltando a I, nós temos:
I = \int  \left(-\frac{y\cos^{-1}y}{\sqrt{1-y^2}}\right) + 1 \, dy = 2y + \cos^{-1}y\sqrt{1-y^2}

Substituindo I em V, nós obtemos:
V = 4\pi\int_0^1 (\cos^{-1} y)^2 \,dy = 4\pi\left[(\cos^{-1} y)\left(y\cos^{-1}y - \sqrt{1-y^2}\right) - 2y - \cos^{-1}y\sqrt{1-y^2}\right]_0^1 = 4\pi(\pi - 2).

Agora cabe a você destrinchar as contas!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 39 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?