• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Moura » Ter Jan 18, 2011 22:42

Determiem a derivada de y em relação a \theta

y=ln(\frac{\sqrt[]{sen\theta*cos\theta}}{1+2ln\theta})

Resp.: Micrsoft Math

\frac{cos(\theta)^2-sen(\theta)^2}{(4ln(\theta)+2)*\sqrt[]{sen\theta*cos\theta}}-\frac{2.\sqrt[]{sen\theta*con\theta}}{\theta(2ln\theta+1)^2}

Resp.: HP 50

-\frac{(2\theta*ln\theta+\theta)sen^2\theta+4cos\theta*sen\theta-(2\theta*ln\theta+\theta)cos^2\theta}{(4ln\theta+2\theta)cos\theta*sen\theta}

Desde já agradeço. :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada

Mensagempor Renato_RJ » Qua Jan 19, 2011 00:06

Campeão, o log natural você pode "abrir", veja:

ln (\frac{\sqrt{sen \Theta \cdot cos \Theta}}{1+2 \cdot ln \Theta}) \Rightarrow \, ln(\sqrt{sen \Theta \cdot cos \Theta}) - ln(1 + 2 \cdot ln \Theta)

Então acho que você pode usar a regra da cadeia e chamar de u = 1 + 2 \cdot ln \Theta para realizar a segunda derivada e fazer semelhante para realizar a primeira derivada chamando de v = \sqrt{sen \Theta \cdot cos \Theta}.

Lembrando que:

\frac{d ln x} {dx} \Rightarrow \, \frac{1}{x}

Eu cheguei ao seguinte resultado:

\frac{1}{2} \cdot ( - \frac{4}{\Theta + 2 \cdot \Theta \cdot ln \Theta} - tang \Theta + cot \Theta)

Conferi no site http://www.wolframalpha.com e o site chegou no mesmo resultado, mas sabe como é, posso ter errado...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)