• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO DE INTEGRAL

CALCULO DE INTEGRAL

Mensagempor Jaison Werner » Sex Jan 07, 2011 18:58

QUAL O VALOR DE \int_{1}^{4}\sqrt[]{xdx}, com n=6 PELA REGRA DE SIMPSON? CONSIDERE 4 CASAS DECIMAIS.

RESPOSTA: 4,6678
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: CALCULO DE INTEGRAL

Mensagempor Prof lucio Baptista » Sex Jan 07, 2011 19:54

ESTE MÉTODO É U, OU SEJA, QUANDO SE QUER OBTERTILIZADO PARA INTERVALO EM QUE O NÚMERO DE SUBINTERVALOS n É MULTIPLO DE 2 UMA FÓRMULA PARA INTEGRAR f(X)ENTRE TRES PONTOS CONSECUTIVOS {X}_{0},{X}_{1}, {X}_{2}.

A FÓRMULA É OBTIDA APROXIMANDO-SE A FUNÇÃO f(x) POR UM POLINÔMIO INTERPOLADOR DE 2º GRAU PARA ESTA APROXIMAÇÃO SÃO NECESSÁRIOS TRÊS PONTOS {X}_{0}{X}_{1}{X}_{2}, QUE DEVERÃO ESTAR IGUALMENTEESPAÇADOS. CHEGANDO A SEGUINTE FÓRMULA:

A= \frac{h}{3}.[{y}_{0}+{4y}_{1}+{2}_{y2}+{4}_{y3}+{2}_{y4}+...+{4}_{yn-1}+{y}_{n}].

OS VALORES DOS COEFICIENTES QUE COMPÕEM ESTE MÉTODO ESTÃO DISPOSTOS DE MANEIRA QUE INICIALMENTE O VALOR É 1, OS SUBSEQUENTES SÃO 4 E 2 NA SEQUENCIA E FINALIZA COM 1.

VOU DAR UM EXEMPLO:

CALCULAR A INTEGRAL \int_{1}^{2,2\frac{1}{X}} dx COM N= 6.

SOLUÇÃO: \int_{1}^{2,2\frac{1}{x}} dx= 1ntal que x \left| \right|\int_{1}^{2,2}= 1n tal que 2,2 tal que - 1n tal que 1 talque= 0,7885 - 0 = 0,7885
h= (\frac{2,2-1}{6})=0,2

ENTÃO SH. JAISOM O VALOR DA SUA INTEGRAL É:4,6678

´ISSO NÃO SENHORA FANTINE?
Prof lucio Baptista
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jan 07, 2011 19:14
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Ciencias Naturais e Matemati
Andamento: formado

Re: CALCULO DE INTEGRAL

Mensagempor MarceloFantini » Sex Jan 07, 2011 21:08

Primeiro, é senhor Fantini, sou homem. E segundo, não sei, não aprendi a matéria com a qual estão lidando (suponho que seja Cálculo Numérico?).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: CALCULO DE INTEGRAL

Mensagempor Jaison Werner » Sáb Jan 08, 2011 11:43

É calculo numérico sim fantini,não sabe?
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: CALCULO DE INTEGRAL

Mensagempor MarceloFantini » Sáb Jan 08, 2011 12:48

Vou ter esse semestre, se a dúvida estiver em aberto tentarei.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?