• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda para resolver Integral definida

Ajuda para resolver Integral definida

Mensagempor rodolphogagno » Qua Dez 01, 2010 15:16

Pessoal, alguém pode me ajudar a resolver essas questões?
a) \int_{0}^{\frac{\Pi}{2}} sen\, 2x\, dx
...........................................................................
b) \int_{-2}^{0} 3w\, \sqrt[]{4-{w}^{2}}\,dw

Alguém se manifesta? rs
rodolphogagno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 01, 2010 14:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Ajuda para resolver Integral definida

Mensagempor DanielFerreira » Qua Dez 01, 2010 17:28

Seja,
2x = u
du = 2 dx ====> dx = du/2

\int_{0}^{\frac{\pi}{2}} sen\,u\, \frac{du}{2} =

\frac{1}{2}\int_{0}^{\frac{\pi}{2}} sen\,u\, du =

\frac{1}{2} . - cos\,u\,\int_{0}^{\frac{\pi}{2}} du =

\frac{- cos\,2x\,}{2}\int_{0}^{\frac{\pi}{2}} =

F(\frac{\pi}{2}) - F(0) =

\frac{ - cos\,2.\frac{\pi}{2}}{2} - \frac{- cos\,2.0}{2} =

\frac{ - cos\,\pi}{2} + \frac{cos\,0}{2} =

- \frac{- 1}{2} + \frac{1}{2} =

1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Ajuda para resolver Integral definida

Mensagempor rodolphogagno » Qua Dez 01, 2010 17:44

O que acha da questão B meu caro?
rodolphogagno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 01, 2010 14:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Ajuda para resolver Integral definida

Mensagempor DanielFerreira » Qua Dez 01, 2010 17:49

Sai por Função Trigonométrica!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Ajuda para resolver Integral definida

Mensagempor Moura » Seg Dez 13, 2010 21:51

b) u=4-{w}^{2}===>\frac{du}{dw}=-2w ===>-2wdw=du ===> dw=\frac{du}{-2w}

\int_{-2}^{0}3w\sqrt[]{4-{w}^{2}}dw =\int_{-2}^{0}3w{u}^{\frac{1}{2}}dw =\int_{-2}^{0}3w{u}^{\frac{1}{2}}\frac{du}{-2w}=\int_{-2}^{0}-\frac{3}{2}{u}^{\frac{1}{2}}du=

-\frac{3}{2}\frac{{u}^{\frac{3}{2}}}{\frac{3}{2}}]_{-2}^3= \frac{2}{3}\left(\frac{-3}{2} \right){u}^{\frac{3}{2}} du]_{-2}^3= -{u}^{\frac{3}{2}}]_{-2}^3

(-(4-(0{)}^{2}{{)}^{\frac{3}{2}})-(-(4-(-2{)}^{2}{)}^{\frac{3}{2}}= -8

:y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron