• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova de limite

Prova de limite

Mensagempor felipe_ad » Qua Out 20, 2010 13:28

Prove que nao existe limite de f(x,y) quando (x,y)->(0,0)
f(x,y)=\frac{x+y}{x^2+y^2}

Tentei por vários caminhos, com retas y=kx, com parabolas y=x², mas sempre dá infinito.
Como faço pra provar que NÃO existe esse limite, segundo o cálculo 2?
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?