• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz hessiana e Laplaciano de gauss

Matriz hessiana e Laplaciano de gauss

Mensagempor irado » Qui Out 07, 2010 22:38

Olá,

Tenho algumas dúvidas que espero que possam me ajudar. Estou querendo encontrar a matriz hessiana de um ponto (x, y, z) para isso estou utilizando o método de diferenças gaussianas (Difference of Gaussian), no entanto encontrei somente as fórmulas para encontrar os valores da derivada de Dxx, Dyy, Dyx e Dxy.

Dxx = D(x +1, y,? )? 2D(x, y,? )+ D(x ?1, y,? )
Dyy = D(x, y +1,? )? 2D(x, y,? )+ D(x, y ?1,? )
Dxy = Dyx = ( D(x ?1, y +1,? )? D(x +1, y +1,? ) ) + ( D(x +1, y ?1,? )? D(x ?1, y ?1,? ) ) /4

A matriz Hessiana tem a forma:

Dxx Dyx Dzx
Dxy Dyy Dzy
Dxz Dyz Dzz

Quais seriam as fórmulas para formar a matriz hessiana, sendo as formulas para 3 váriaveis?

Outra questão, a diferença gaussiana equivale ao laplaciano de gauss? Pergunto isso porque estou aplicando a função gaussiana computacionalmente através de uma máscara e através delas ainda não sei como definir a escala (?) que quero aplicar no ponto, a máscara já "tem" uma escala. E se utilizar a função gaussiana diretamente, eu posso definir o valor da escala substituindo diretamente na formula.
irado
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 07, 2010 21:18
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59