• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada de segunda ordem

derivada de segunda ordem

Mensagempor lgbmp » Sex Set 03, 2010 19:25

Boa noite, estou com um adúvida tremenda numa questão envolvendo derivadas parciais, como resolver a derivada:
fxx(x,Y) e fyy(x,y) = e^secx + x cosy.

Obrigado.
Gustavo
lgbmp
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 03, 2010 19:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: derivada de segunda ordem

Mensagempor MarceloFantini » Seg Set 06, 2010 12:54

f(x,y) = e^{secx} +xcosy;

f_x(x,y) = e^{secx} \cdot (secx \cdot tgx) + cosy
f_{xx}(x,y) = e^{secx} \cdot (secx \cdot tgx) \cdot (secx \cdot tgx) \cdot (sec^2 x) = e^{secx} \cdot sec^4 x \cdot tg^2x

f_y(x,y) = x(-seny) = -xseny
f_{yy}(x,y) = -xcosy
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: derivada de segunda ordem

Mensagempor lgbmp » Seg Set 06, 2010 13:35

Valeu muito obrigado.

Abraços. Gustavo
lgbmp
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 03, 2010 19:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)