• Anúncio Global
    Respostas
    Exibições
    Última mensagem

resolva estes probleminhas!

resolva estes probleminhas!

Mensagempor leandro moraes » Sex Jul 02, 2010 15:51

pessoal resolva explicando!
04. Um alfaiate pagou R$ 960,00 por uma peça de fazenda e R$ 768,00 por outra de mesma qualidade. Qual o comprimento de cada uma das peças, sabendo-se que a primeira tem 12m a mais do que a segunda?


08. Empregaram-se 27,4kg de lã para fabricar 24m de tecido de 60cm de largura. Qual será o comprimento do tecido que se poderia fabricar com 3,425 toneladas de lã para se obter uma largura de 0,90m?
leandro moraes
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Ter Jan 12, 2010 23:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: formado

Re: resolva estes probleminhas!

Mensagempor Tom » Sex Jul 02, 2010 19:59

04)

Considerando que existe uma relação linear entre o preço da ferramenta e o tamanho da mesma, bem como, entre o preço da ferramenta e a sua qualidade.
Como as peças tem a mesma qualidade, consideraremos apenas a relação entre preço e tamanho.

Seguindo a lógica, uma peça maior seria mais cara, logo a relação de proporcionalidade é direta. Assim, temos:

\dfrac{960}{768}=\dfrac{x+12}{x} , onde x é o comprimento da menor ferramenta.

\dfrac{5}{4}=\dfrac{x+12}{x}\rightarrow 5x=4x+48 e , portanto, x=48

Finalmente, as peças medem 48m e 60m



05) Considerando que ambos os tecidos tem a mesma densidade superficial de lã ,então a quantidade de lã utilizada é diretamente proporcional a área do tecido, isto é:

\dfrac{L_1}{L_2}=\dfrac{A_1}{A_2}, onde L_1,L_2 representam as respectivas quantidades de lã utilizadas nos tecidos um e dois de áreas A_1,A_2, respectivamente.

Ora, A_1=24.0,6m^2 e A_2=0,9x, onde x é o comprimento do segundo tecido.

Assim: \dfrac{27,4}{3425}=\dfrac{24.0,6}{0,9x}\rightarrow x=\dfrac{24.0,6.3425}{27,4.0,9}=2000

Isto é, o comprimento do tecido produzido é 2000m , ou ainda, 2km
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59