![\lim_{x \rightarrow 1} \frac{\sqrt[]{x} - 1}{\sqrt[]{2x+3} - \sqrt[]{5}} \lim_{x \rightarrow 1} \frac{\sqrt[]{x} - 1}{\sqrt[]{2x+3} - \sqrt[]{5}}](/latexrender/pictures/e05a915229d57e3b888e016056a6d24c.png)


![\lim_{x \rightarrow 7} \frac{\sqrt[]{x} - \sqrt[]{7}}{\sqrt[]{x + 7} - \sqrt[]{14}} \lim_{x \rightarrow 7} \frac{\sqrt[]{x} - \sqrt[]{7}}{\sqrt[]{x + 7} - \sqrt[]{14}}](/latexrender/pictures/cca90b1c02de48af919ea504cc0bb43e.png)
E quem puder me explicar, como identifico o limite pelo método intuitivo, conforme mostra a img abaixo:

Desculpe um pouco o excesso, mas essas são mihas dúvidas no momento.
Obs: Ainda não cheguei a ver derivada.
![\lim_{x \rightarrow 1} \frac{\sqrt[]{x} - 1}{\sqrt[]{2x+3} - \sqrt[]{5}} \lim_{x \rightarrow 1} \frac{\sqrt[]{x} - 1}{\sqrt[]{2x+3} - \sqrt[]{5}}](/latexrender/pictures/e05a915229d57e3b888e016056a6d24c.png)


![\lim_{x \rightarrow 7} \frac{\sqrt[]{x} - \sqrt[]{7}}{\sqrt[]{x + 7} - \sqrt[]{14}} \lim_{x \rightarrow 7} \frac{\sqrt[]{x} - \sqrt[]{7}}{\sqrt[]{x + 7} - \sqrt[]{14}}](/latexrender/pictures/cca90b1c02de48af919ea504cc0bb43e.png)



), e depois embaixo pelo conjugado também. Verá que o (x-1) pode ser cancelado, e aí o limite não é mais indeterminado. O quarto é feito de maneira análoga.


Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)