• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema, mínimos e máximos

Problema, mínimos e máximos

Mensagempor Bruhh » Sex Jun 11, 2010 16:45

*
Editado pela última vez por Bruhh em Sex Jun 11, 2010 17:03, em um total de 1 vez.
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Problema, mínimos e máximos

Mensagempor Bruhh » Sex Jun 11, 2010 16:46

Bruhh escreveu:Olá mais uma vez! :)

Então, dessa vez gostaria apenas que alguém dessa uma olhada na minha resolução do problema abaixo, já que este é a única questão de um trabalho muito importante da minha facul.
Vou detalhar toda a minha resolução para garantir que fiz tudo corretamente. Vamos lá:

Um homem está na margem de um rio com 1km de largura. Ele quer ir para uma cidade na margem oposta, mas 4Km rio acima. Ele pretende remar em linha reta até um ponto P na margem oposta e depois caminhar o restante ao longo da margem, conforme figura abaixo. Para que ponto ele deve remar a fim de chegar a seu destino no menor tempo se ele pode andar a 7km/h e remar a 6km/h? Qual será o menor tempo?

Imagem

|AP|² = x²+1²
|AP|=\sqrt[]{{x}^{2}+1}

Distância AC = \sqrt[]{{x}^{2}+1} + (4-x)
Tempo= \frac{\sqrt[]{{x}^{2}+1}}{6}+\frac{(4-x)}{7}
T=\frac{1}{6}.({{x}^{2}+1})^{\frac{1}{2}}+ \frac{(4-x)}{7}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{-\frac{1}{2}}.2x+\frac{[7.(-1)-(4-x).0]}{{7}^{2}}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{\frac{-1}{2}}.2x -\frac{7}{49}
T'=\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}
\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}=0
\frac{x}{6\sqrt[]{{x}^{2}+1}}=\frac{1}{7}
7x=6\sqrt[]{{x}^{2}+1}
{\left(\frac{7x}{6} \right)}^{2}={\left(\sqrt[]{{x}^{2}+1}}\right)^{2}
\frac{49{x}^{2}}{36}={x}^{2}+1
\frac{49{x}^{2}}{36} - {x}^{2}=1
\frac{13{x}^{2}}{36}=1
x=\sqrt[]{\frac{36}{13}}
x=\frac{6}{\sqrt[]{13}}\simeq1,66 Km

Aplicando o valor encontrado na função tempo para descobrir o menor tempo possível:
T=\frac{\sqrt[]{{1,66}^{2}+1}}{6}+\frac{4-1,66}{7}
T\simeq0,657 horas

Então, para o homem chegar ao seu destino no menor tempo possvel, ele deve fazer o percurso APC que levará aproximadamente 0,657 horas

Então, é isso? Fiz alguma coisa de errado?
Muito Obrigada
Bom Final De Semana a Todos
Editado pela última vez por Bruhh em Sex Jun 11, 2010 16:51, em um total de 1 vez.
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Problema, mínimos e máximos

Mensagempor Bruhh » Sex Jun 11, 2010 16:47

Bruhh escreveu:Olá mais uma vez! :)

Então, dessa vez gostaria apenas que alguém dessa uma olhada na minha resolução do problema abaixo, já que este é a única questão de um trabalho muito importante da minha facul.
Vou detalhar toda a minha resolução para garantir que fiz tudo corretamente. Vamos lá:

Um homem está na margem de um rio com 1km de largura. Ele quer ir para uma cidade na margem oposta, mas 4Km rio acima. Ele pretende remar em linha reta até um ponto Pna margem oposta e depois caminhar o restante ao longo da margem, sonforme figura abaixo. Para que ponto ele deve remar a fim de chegar a seu destino no menor tempo se ele pode andar a 7km/h e remar a 6km/h? Qual será o menor tempo?

Imagem

|AP|² = x²+1²
|AP|=\sqrt[]{{x}^{2}+1}

Distância AC = \sqrt[]{{x}^{2}+1} + (4-x)
Tempo= \frac{\sqrt[]{{x}^{2}+1}}{6}+\frac{(4-x)}{7}
T=\frac{1}{6}.({{x}^{2}+1})^{\frac{1}{2}}+ \frac{(4-x)}{7}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{-\frac{1}{2}}.2x+\frac{[7.(-1)-(4-x).0]}{{7}^{2}}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{\frac{-1}{2}}.2x -\frac{7}{49}
T'=\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}
\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}=0
\frac{x}{6\sqrt[]{{x}^{2}+1}}=\frac{1}{7}
7x=6\sqrt[]{{x}^{2}+1}
{\left(\frac{7x}{6} \right)}^{2}={\left(\sqrt[]{{x}^{2}+1}}\right)^{2}
\frac{49{x}^{2}}{36}={x}^{2}+1
\frac{49{x}^{2}}{36} - {x}^{2}=1
\frac{13{x}^{2}}{36}=1
x=\sqrt[]{\frac{36}{13}}
x=\frac{6}{\sqrt[]{13}}\simeq1,66 Km

Aplicando o valor encontrado na função tempo para descobrir o menor tempo possível:
T=\frac{\sqrt[]{{1,66}^{2}+1}}{6}+\frac{4-1,66}{7}
T\simeq0,657 horas

Então, para o homem chegar ao seu destino no meu tempo possvel, ele deve fazer o percurso APC que levará aproximadamente 0,657 horas

Então, é isso? Fiz alguma coisa de errado?
Muito Obrigada
Bom Final De Semana a Todos
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Problema, mínimos e máximos

Mensagempor Bruhh » Sex Jun 11, 2010 16:53

Bruhh escreveu:Olá mais uma vez! :)

Então, dessa vez gostaria apenas que alguém dessa uma olhada na minha resolução do problema abaixo, já que este é a única questão de um trabalho muito importante da minha facul.
Vou detalhar toda a minha resolução para garantir que fiz tudo corretamente. Vamos lá:

Um homem está na margem de um rio com 1km de largura. Ele quer ir para uma cidade na margem oposta, mas 4Km rio acima. Ele pretende remar em linha reta até um ponto Pna margem oposta e depois caminhar o restante ao longo da margem, sonforme figura abaixo. Para que ponto ele deve remar a fim de chegar a seu destino no menor tempo se ele pode andar a 7km/h e remar a 6km/h? Qual será o menor tempo?

Imagem

|AP|² = x²+1²
|AP|=\sqrt[]{{x}^{2}+1}

Distância AC = \sqrt[]{{x}^{2}+1} + (4-x)
Tempo= \frac{\sqrt[]{{x}^{2}+1}}{6}+\frac{(4-x)}{7}
T=\frac{1}{6}.({{x}^{2}+1})^{\frac{1}{2}}+ \frac{(4-x)}{7}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{-\frac{1}{2}}.2x+\frac{[7.(-1)-(4-x).0]}{{7}^{2}}
T'=\frac{1}{6}.\frac{1}{2}.{({x}^{2}+1)}^{\frac{-1}{2}}.2x -\frac{7}{49}
T'=\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}
\frac{x}{6\sqrt[]{{x}^{2}+1}}-\frac{1}{7}=0
\frac{x}{6\sqrt[]{{x}^{2}+1}}=\frac{1}{7}
7x=6\sqrt[]{{x}^{2}+1}
{\left(\frac{7x}{6} \right)}^{2}={\left(\sqrt[]{{x}^{2}+1}}\right)^{2}
\frac{49{x}^{2}}{36}={x}^{2}+1
\frac{49{x}^{2}}{36} - {x}^{2}=1
\frac{13{x}^{2}}{36}=1
x=\sqrt[]{\frac{36}{13}}
x=\frac{6}{\sqrt[]{13}}\simeq1,66 Km

Aplicando o valor encontrado na função tempo para descobrir o menor tempo possível:
T=\frac{\sqrt[]{{1,66}^{2}+1}}{6}+\frac{4-1,66}{7}
T\simeq0,657 horas

Então, para o homem chegar ao seu destino no menor tempo possvel, ele deve fazer o percurso APC que levará aproximadamente 0,657 horas

Então, é isso? Fiz alguma coisa de errado?
Muito Obrigada
Bom Final De Semana a Todos
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.