• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - Problemas

Derivadas - Problemas

Mensagempor cassiog » Ter Mai 18, 2010 18:48

Na lista de exercicios sobre maximos e minimos de derivadas há varios problemas que nao estou conseguindo resolver. Uns batem, outros nao.
aí vai:
4- Determinar as dimensões de um cilindro, inscrito em uma esfera de raio R, cuja área da superfície externa total é a máxima possível.
Resposta: r = raio da base = \sqrt{2/3}R. h= altura do cilindro =\sqrt{2}r.

6- Quer-se construir um tanque de aço para armazenar gás propano, com a forma de um cilindro circular reto, com um hemisfério (semi-esfera) em cada extremidade. Se a capacidade desejada para o tanque é 100 decímetros cúbicos (litros), quais as dimensões que exigem a menor quantidade de aço? (despreze a espessura das paredes do tanque).
Resposta: O tanque deve ser esférico, de raio \sqrt[3]{75/\Pi}

8-Um veterinário tem 100m de tela de arame. Com isto deseja construir seis canis, primeiro cercando uma gerião retangular e depois subdividindo essa região em seis retângulos menores, através de cinco cercas divisórias internas, paralelas a um dos lados. Que dimensões externas, dessa região retangular, maximizam sua área total, se o veterinário dasta os 100m de tela nessa construção?
Resposta: 25m por 50/7 \approx 7,14m

o 8 eu nem consegui começar, o 4 eu acho a relação r^2 = R^2 - h^2/4 e substituo na fórmula da área do cilindro: A = 2*\Pi*r^2 + 2*\Pi*r*h, derivo, tentei de tudo mas não dá certo. O mesmo vai pro exercício 6.

agradeço desde já,
Cassio
cassiog
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 18, 2010 18:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.