• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Seg Abr 12, 2021 15:59

(ITA-1952) calcular o
\lim_{n\rightarrow\infty}\sqrt[n]{n!}/n
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Seg Abr 12, 2021 17:04

soluçao
precisarei de dois argumentos para resolver esse exercicio

o limite fundamental

\lim_{n\rightarrow\infty}(1+(1/n))^n=\lim_{y\rightarrow 0}(1+y)^{1/y}=e

e o limite,que é consequencia do limite fundamental apresentado

\lim_{y\rightarrow 0}(1+ny)^{1/y}=e^n

de fato,

(1+ny)^{1/y}=((1+ny)^{1/y})^{n}

façamos

z=ny\Rightarrow \Rightarrow ((1+z)^{1/z})^{n}

logo

\lim_{z\rightarrow 0}( ((1+z)^{1/z})^{n})=(\lim_{z\rightarrow0}(1+z)^{1/z})^{n}=e^{n}

voltemos a questao

L=\sqrt[n]{n!}/n=\sqrt[n]{n!/n^{n}}=((n.(n-1)....2.1)/n^{n})^{1/n}

=((n/n).(n-1)/n....(2/n).(1/n))^{1/n}

=(1-1/n)^{1/n}.(1-2/n)^{1/n}
....(1-(n-2)/n)^{1/n}.(1-(n-1)/n)^{1/n}

façamos

y=-(1/n)...n\rightarrow\infty...y\rightarrow0

entao

\sqrt[n]{n!}/n=(1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y}

\lim_{y\rightarrow0}((1+y)^{-1/y}.(1+2y)^{-2/y}....(1+(n-1)y)^{-(n-1)/y})

(\lim_{y\rightarrow0}(1+y)^{-1/y})....(\lim_{y\rightarrow0}(1+(n-1)y)^{-(n-1)/y})

=e^{-1}.e^{-2}....e^{(n-1)}=(e^{1+2+...+(n-1)}) ^{-1}

=(e^{((n-1).(n-2))/2})^{-1}=(e^{((n^2-3.n+2)/2)})^{-1}

=(e^{n^2-(3/2)n+1})

=(e^{n^2/2)})^{-1}.(e^{-3n/2})^{-1}.e^{-1}

=(e^{(2/n^2)-2/(3n)+1)}

=e^{2/n^2}.e^{(-2/3n)}.e^{-1}

n\rightarrow \infty\Rightarrow L=1.1.e^{-1}=1/e...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.