por guilherme5088 » Seg Abr 12, 2021 11:40
Considere uma curva parametrizada α(t) tal que sua derivada segunda seja identicamente
nula. O que podemos dizer sobre α?
Se a derivada segunda é nula, então a curva é da forma α(t)=(at,bt,ct), certo? Como eu escrevo isso de maneira formal?
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Curvas
por Walquiria » Sáb Nov 05, 2011 22:34
- 3 Respostas
- 1968 Exibições
- Última mensagem por Neperiano
Dom Nov 06, 2011 11:40
Estatística
-
- curvas de nível
por Silva339 » Qua Mai 22, 2013 18:16
- 0 Respostas
- 1309 Exibições
- Última mensagem por Silva339
Qua Mai 22, 2013 18:16
Cálculo: Limites, Derivadas e Integrais
-
- PARAMETRIZAÇÃO DE CURVAS
por sasuyanli » Sáb Out 26, 2013 12:14
- 1 Respostas
- 3687 Exibições
- Última mensagem por e8group
Dom Nov 03, 2013 14:31
Cálculo: Limites, Derivadas e Integrais
-
- Curvas delimitada
por b11adriano » Dom Nov 23, 2014 14:56
- 0 Respostas
- 1608 Exibições
- Última mensagem por b11adriano
Dom Nov 23, 2014 14:56
Equações
-
- [Calculo 1] Esboço de curvas
por rafaelbr91 » Sáb Mai 12, 2012 19:32
- 1 Respostas
- 2023 Exibições
- Última mensagem por LuizAquino
Seg Mai 14, 2012 09:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.