por guilherme5088 » Ter Abr 06, 2021 11:34
Seja α(t) uma curva parametrizada que não passa pela origem. Se α(to) é o ponto do traço de α mais próximo da origem e α'(to) é diferente de 0. Mostre que o vetor posição α(t) é ortogonal a α'(to).
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por adauto martins » Qui Abr 08, 2021 13:12
temos que
logo sao perpendiculares...
-
adauto martins
- Colaborador Voluntário
-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por guilherme5088 » Qui Abr 08, 2021 20:17
Não entendi pq vc igualou a zero logo no começo da soluçao.
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por guilherme5088 » Qui Abr 08, 2021 20:19
Isso ocorre pq o produto escalar é um número?
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por guilherme5088 » Qui Abr 08, 2021 23:33
Entendi agora. Como |a(to)| é mínimo, entao to é um ponto crítico, isso implica g'(t)=0, considerando g(t)= <a(t),a(t)>
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por LuizAquino » Sex Abr 09, 2021 13:28
guilherme5088 escreveu:Seja α(t) uma curva parametrizada que não passa pela origem. Se α(to) é o ponto do traço de α mais próximo da origem e α'(to) é diferente de 0. Mostre que o vetor posição α(t) é ortogonal a α'(to).
Olá Guilherme, veja minha resolução neste vídeo:
https://www.youtube.com/watch?v=1XRFbaIvguQEu espero que isso possa ajudar!
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por adauto martins » Sex Abr 09, 2021 17:07
pois é meu caro guilherme,
toda curva,cujo traço(caminho) é continua e diferencial em um dado dominio,tem-se o vetor posiçao ortogonal ao vetor tangente("velocidade"),isso é um teorema,bom de provar.pois é a norma de um vetor,é um escalar,logo a derivada de um escalar e zero.
assim como tambem teremos
fica como exercicio.
bom o video do luiz aquino,elucida muito sobre parametrizaçao de curvas...
-
adauto martins
- Colaborador Voluntário
-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por guilherme5088 » Sex Abr 09, 2021 21:05
LuizAquino escreveu:guilherme5088 escreveu:Seja α(t) uma curva parametrizada que não passa pela origem. Se α(to) é o ponto do traço de α mais próximo da origem e α'(to) é diferente de 0. Mostre que o vetor posição α(t) é ortogonal a α'(to).
Olá Guilherme, veja minha resolução neste vídeo:
https://www.youtube.com/watch?v=1XRFbaIvguQEu espero que isso possa ajudar!
Sou inscrito no seu canal, professor. Muito bom o vídeo.
-
guilherme5088
- Usuário Ativo
-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por LuizAquino » Sex Abr 09, 2021 21:45
guilherme5088 escreveu:Sou inscrito no seu canal, professor. Muito bom o vídeo.
Legal!
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Calculo 1] Esboço de curvas
por rafaelbr91 » Sáb Mai 12, 2012 19:32
- 1 Respostas
- 2023 Exibições
- Última mensagem por LuizAquino
Seg Mai 14, 2012 09:18
Cálculo: Limites, Derivadas e Integrais
-
- Calculo Vetorial
por roger0196 » Seg Abr 04, 2011 15:02
- 6 Respostas
- 4964 Exibições
- Última mensagem por Jackie
Ter Abr 26, 2011 20:20
Geometria Analítica
-
- Calculo Vetorial
por Renato Lima » Qua Abr 27, 2011 22:21
- 1 Respostas
- 1867 Exibições
- Última mensagem por LuizAquino
Qua Abr 27, 2011 23:12
Geometria Analítica
-
- GA e Calculo Vetorial
por camposhj » Sex Out 07, 2011 00:41
- 3 Respostas
- 2200 Exibições
- Última mensagem por LuizAquino
Sex Out 07, 2011 13:06
Geometria Analítica
-
- Cálculo Vetorial
por Jhenrique » Ter Jul 02, 2013 19:10
- 0 Respostas
- 1431 Exibições
- Última mensagem por Jhenrique
Ter Jul 02, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma
, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.