por peridotito » Sex Nov 20, 2020 22:26
Olá, alguem poderia me ajudar com o exercicio abaixo. Está relacionado com integral de linha.
determine o trabalho realizado por F= (yz, xz + 8, xy) para deslocar uma
partícula ao longo da poligonal que une os pontos A(0,0,0) a B(1,1,1) e
mostre que o trabalho independe do caminho percorrido pela partícula.
-
peridotito
- Novo Usuário
-
- Mensagens: 1
- Registrado em: Seg Nov 09, 2020 20:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de produção
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo] Integral de linha
por pedro22132938 » Sex Dez 30, 2016 01:28
- 3 Respostas
- 6797 Exibições
- Última mensagem por adauto martins
Seg Jan 02, 2017 15:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha - 2
por DanielFerreira » Dom Jun 03, 2012 16:14
- 2 Respostas
- 2578 Exibições
- Última mensagem por DanielFerreira
Dom Jun 03, 2012 19:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha
por calc3 » Dom Jun 07, 2015 11:43
- 0 Respostas
- 3041 Exibições
- Última mensagem por calc3
Dom Jun 07, 2015 11:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral de linha - Trabalho
por Bruhh » Ter Jul 05, 2011 16:55
- 1 Respostas
- 3115 Exibições
- Última mensagem por LuizAquino
Ter Jul 05, 2011 19:10
Cálculo: Limites, Derivadas e Integrais
-
- [Integral de Linha] Teoria
por Claudin » Qui Jul 25, 2013 23:47
- 0 Respostas
- 1918 Exibições
- Última mensagem por Claudin
Qui Jul 25, 2013 23:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar
.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.