• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo 2 (limite)

Cálculo 2 (limite)

Mensagempor guilherme5088 » Seg Jun 15, 2020 18:25

f(x,y)=\frac{sin(xy)}{sin(x)sin(y}
Existe limite quando (x,y) tende a (0,0) ?
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Cálculo 2 (limite)

Mensagempor adauto martins » Sáb Jun 20, 2020 17:50

sem o latex,mas vamos la...
tomemos dois pontos (x,y),(-x,-y),diametricamente opostos, na vizinha de (0,0)...

logo,

L(+)=lim((x,y)...>(0,0) sen(x.y)/(senx.seny)=lim((-x,-y)...>(0,0)sen((-x).(-y))/(-(sen(-x).(-sen(y-))=L(-)...
pois sen(-x)=-senx...>senx=-sen(-x)
logo

L(+)=L(-),entao os limites laterais existem e sao iguiais,logo existe o lim((x,y)...>(0,0)(....)
logo a funçao é continua e L(+)=L(-)=L...mostre que L=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Cálculo 2 (limite)

Mensagempor adauto martins » Ter Jun 23, 2020 14:47

esqueci-me de colocar os outros pontos diametralmente opostos,a saber

(x,-y),(-x,y),pois o limite é calculado no R^2(plano),entao temos que mostrar
que todos caminhos tomados na vizinha de (0,0) tem o mesmo limite.e dividir o plano
em 4-quadrantes,assim se faz
em qquer outra dimensao,R^3,R^4,...

tomemos pois,

L(+)=lim(x,-y)...>(0,0)sen(x.(-y))/((senx.sen(-y))=lim((x,-y)...>(0,0))sen((-x).y)/(-sen(-x).seny))=L(-)

...OBRIGADO
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.