• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo 2 (limite)

Cálculo 2 (limite)

Mensagempor guilherme5088 » Seg Jun 15, 2020 18:25

f(x,y)=\frac{sin(xy)}{sin(x)sin(y}
Existe limite quando (x,y) tende a (0,0) ?
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Cálculo 2 (limite)

Mensagempor adauto martins » Sáb Jun 20, 2020 17:50

sem o latex,mas vamos la...
tomemos dois pontos (x,y),(-x,-y),diametricamente opostos, na vizinha de (0,0)...

logo,

L(+)=lim((x,y)...>(0,0) sen(x.y)/(senx.seny)=lim((-x,-y)...>(0,0)sen((-x).(-y))/(-(sen(-x).(-sen(y-))=L(-)...
pois sen(-x)=-senx...>senx=-sen(-x)
logo

L(+)=L(-),entao os limites laterais existem e sao iguiais,logo existe o lim((x,y)...>(0,0)(....)
logo a funçao é continua e L(+)=L(-)=L...mostre que L=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Cálculo 2 (limite)

Mensagempor adauto martins » Ter Jun 23, 2020 14:47

esqueci-me de colocar os outros pontos diametralmente opostos,a saber

(x,-y),(-x,y),pois o limite é calculado no R^2(plano),entao temos que mostrar
que todos caminhos tomados na vizinha de (0,0) tem o mesmo limite.e dividir o plano
em 4-quadrantes,assim se faz
em qquer outra dimensao,R^3,R^4,...

tomemos pois,

L(+)=lim(x,-y)...>(0,0)sen(x.(-y))/((senx.sen(-y))=lim((x,-y)...>(0,0))sen((-x).y)/(-sen(-x).seny))=L(-)

...OBRIGADO
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.