-
-
Novo APOIA.se AjudaMatemática
por admin em Sáb Abr 25, 2020 19:01
- 0 Tópicos
- 460569 Mensagens
-
Última mensagem por admin
em Sáb Abr 25, 2020 19:01
-
-
Agradecimento aos Colaboradores
por admin em Qui Nov 15, 2018 00:25
- 0 Tópicos
- 519414 Mensagens
-
Última mensagem por admin
em Qui Nov 15, 2018 00:25
-
-
Ativação de Novos Registros
por admin em Qua Nov 14, 2018 11:58
- 0 Tópicos
- 483268 Mensagens
-
Última mensagem por admin
em Qua Nov 14, 2018 11:58
-
-
Regras do Fórum - Leia antes de postar!
por admin em Ter Mar 20, 2012 21:51
- 0 Tópicos
- 684738 Mensagens
-
Última mensagem por admin
em Ter Mar 20, 2012 21:51
-
-
DICA: Escrevendo Fórmulas com LaTeX via BBCode
por admin em Qua Ago 29, 2007 04:04
- 41 Tópicos
- 2044384 Mensagens
-
Última mensagem por Janayna
em Qui Abr 27, 2017 00:04
por guilherme5088 » Seg Jun 15, 2020 18:25

Existe
limite quando (x,y) tende a (0,0) ?
-
guilherme5088
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Set 02, 2019 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por adauto martins » Sáb Jun 20, 2020 17:50
sem o latex,mas vamos la...
tomemos dois pontos (x,y),(-x,-y),diametricamente opostos, na vizinha de (0,0)...
logo,
L(+)=lim((x,y)...>(0,0) sen(x.y)/(senx.seny)=lim((-x,-y)...>(0,0)sen((-x).(-y))/(-(sen(-x).(-sen(y-))=L(-)...
pois sen(-x)=-senx...>senx=-sen(-x)
logo
L(+)=L(-),entao os limites laterais existem e sao iguiais,logo existe o lim((x,y)...>(0,0)(....)
logo a funçao é continua e L(+)=L(-)=L...mostre que L=0...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Jun 23, 2020 14:47
esqueci-me de colocar os outros pontos diametralmente opostos,a saber
(x,-y),(-x,y),pois o limite é calculado no R^2(plano),entao temos que mostrar
que todos caminhos tomados na vizinha de (0,0) tem o mesmo limite.e dividir o plano
em 4-quadrantes,assim se faz
em qquer outra dimensao,R^3,R^4,...
tomemos pois,
L(+)=lim(x,-y)...>(0,0)sen(x.(-y))/((senx.sen(-y))=lim((x,-y)...>(0,0))sen((-x).y)/(-sen(-x).seny))=L(-)
...OBRIGADO
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4113 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- limite.como calculo esse limite?
por jeffinps » Ter Mar 12, 2013 12:07
- 1 Respostas
- 1790 Exibições
- Última mensagem por Douglas16

Ter Mar 12, 2013 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] AJUDA Calculo de Limite
por will94 » Ter Mai 22, 2012 20:32
- 1 Respostas
- 1740 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 2705 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 4772 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.