• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite Logarítmico

Limite Logarítmico

Mensagempor MCordeiro » Qua Mai 20, 2020 16:48

Resolva sem utilizar L'hospital:

\lim_{x\rightarrow0}\frac{ln(1+3sen(x))}{sen(x)}

já tentei propriedades logarítmicas,multiplicar a fração por conjugados mas não chego a lugar nenhum.

Gab: 3
MCordeiro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mai 08, 2020 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática bacharelado
Andamento: cursando

Re: Limite Logarítmico

Mensagempor LuizAquino » Qua Mai 20, 2020 23:46

MCordeiro escreveu:Resolva sem utilizar L'hospital:

\lim_{x\rightarrow0}\frac{ln(1+3sen(x))}{sen(x)}

já tentei propriedades logarítmicas,multiplicar a fração por conjugados mas não chego a lugar nenhum.

Gab: 3


Olá MCordeiro , faça a substituição de variáveis:

u = 3\,\textrm{sen}\,(x)

Note que quando x\to 0, teremos u\to 0. Desse modo, o limite pode ser reescrito como:

\lim_{x\to 0}\dfrac{\ln(1 + 3\,\textrm{sen}\,(x))}{\textrm{sen}\,(x)} = \lim_{u\to 0}\dfrac{\ln(1 + u)}{\dfrac{u}{3}}

Efetuando a divisão e usando propriedades dos logaritmos, podemos dizer que:

\lim_{u\to 0}\dfrac{\ln(1 + u)}{\dfrac{u}{3}} = \lim_{u\to 0}\dfrac{\ln(1 + u)}{1} \cdot \dfrac{3}{u}

= \lim_{u\to 0}\dfrac{3}{u}\ln(1 + u)

= \lim_{u\to 0}3\ln(1 + u)^\frac{1}{u}

= 3\ln \left[\lim_{u\to 0}(1 + u)^\frac{1}{u}\right]

Agora lembre do limite exponencial:

\lim_{u\to 0}(1 + u)^\frac{1}{u} = e

Tente finalizar o exercício com essa informação. Comente aqui o que você conseguiu.

Obs.: se tiver dúvida sobre o limite exponencial, veja aos 6:54 da minha videoaula: https://www.youtube.com/watch?v=2GRCPZy3YdY&list=PLFAD938CE631F6449&index=10&t=0s .
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite Logarítmico

Mensagempor MCordeiro » Qui Mai 21, 2020 17:34

Consegui terminar,obrigado.
MCordeiro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mai 08, 2020 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática bacharelado
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)