• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada parcial

Derivada parcial

Mensagempor guilherme5088 » Seg Mar 23, 2020 17:55

Sejam z={e}^{{x}^{2}+{y}^{2}}, x=rcos\Theta , y=rsen\Theta. Verifique:
\frac{\partial z}{\partial r}= {e}^{{x}^{2}+{y}^{2}}(2xcos\Theta+2ysen\Theta.
Conclua que:
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x}cos\Theta + \frac{\partial z}{\partial y}sen\Theta
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Derivada parcial

Mensagempor guilherme5088 » Seg Mar 23, 2020 17:56

Verifique que *
Conclua que*
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.