• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercícios de cálculo 3

exercícios de cálculo 3

Mensagempor ezidia51 » Dom Nov 10, 2019 15:22

Por favor me ajudem com esta questão.Não consigo encontrar o erro:
O volume de uma região Q limitada acima pela esfera \rho=\sigmae abaixo pelo cone\varphi=ccom 0<C<\frac{\pi}{2}
Fiz o cálculo como está no anexo mas ainda está dando erro.
Anexos
calc 3.jpg
ezidia51
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: exercícios de cálculo 3

Mensagempor adauto martins » Dom Nov 10, 2019 17:09

primeiramente vamos delimitar as condiçoes do solido,que esta em coordenadas esfericas,e tal que

0\preceq\rho\preceq a...0\preceq\phi\preceq(\pi/2)...

0\preceq\theta\preceq 2\pi

{v}_{q}=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{a}{\rho}^{2}(sen\phi) 
d\rho d\phi d\theta=\int_{0}^{2\pi}\int_{0}^{\pi/2}(sen\phi)(({\rho}^{3}/3))[0,a])d\phi d\theta

{v}_{q}=({a}^{3}/3)\int_{0}^{2\pi}\int_{0}^{\pi/2}(sen\phi)d\phi d\theta

{v}_{q}=({a}^{3}/3)\int_{0}^{2\pi}((-cos\phi)[0,\pi/2])d\theta

=({a}^{3}/3)\int_{0}^{2\pi}=(2\pi/3){a}^{3}

que é o mesmo resultado que vc chegou...e como é um solido a resposta que vc diz ser certa nao pode ser
r.{a}^{3},pois seria quatro dimensoes...verifique direita esse r,que nao é o raio da esfera,pois o raio é a...e ate onde posso te ajudar...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercícios de cálculo 3

Mensagempor ezidia51 » Dom Nov 10, 2019 20:10

:y: :y: :y: :y: muito obrigado
ezidia51
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: exercícios de cálculo 3

Mensagempor adauto martins » Dom Nov 10, 2019 21:07

correçao:
a coordenada \varphi que delimita o cone varia de 0\prec\varphi\preceq \pi/4
o problema nao faz mençao a nenhuma restriçao do cone...alias se vc tiver a questao,me mande...
entao a integral

\int_{0}^{\pi/4}sen d\varphi=-cos\varphi[0,\pi/4]

=-(cos(\pi/4)-cos0)=(1-\sqrt[]{2}/2)=(2-\sqrt[]{2})/2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)


cron