• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor guilherme5088 » Sex Nov 01, 2019 18:42

determinar a constante a tal que a função f(x)=x^2+a/x tenha um mínimo local em x=2. Mostre que tal função não pode ter máximo local para nenhum valor de a.
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Derivada

Mensagempor guilherme5088 » Sex Nov 01, 2019 18:43

Eu consegui determinar o valor de a, derivando e igualando a 0 no ponto x=2, mas não entendi como justificar a segunda parte
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Derivada

Mensagempor adauto martins » Sex Nov 01, 2019 21:52

y={x}^{2}+(a/x)...y'=({x}^{2})'+a.(1/x)'

y=2x+(-1).a/({x}^{2})\Rightarrow y'=0

(2.{x}^{3}-a)/({x}^{2})=0\Rightarrow x\neq 0...{x}^{3}=a/2

x=\sqrt[3]{a/2}

bom para saber se x=\sqrt[3]{a/2} é ponto de maximo ou minimo,devemos calcular a derivada segunda nesse ponto,entao:

y'=2x-(a/{x}^{2})\Rightarrow y''=(2x)'-(a/{x}^{2})'

y''=2-(-2)(a/{x}^{3})=(2{x}^{3}-2a)/{x}^{3}
bom para se ter um minimo em x=2,teriamos que ter:

y''(2)=(2.({2})^{3}-2a)/{2}^{3}\succ 0\Rightarrow

(16-2a)\succ 8\Rightarrow -2a\succ -8

a\prec 4...

agora vamos verificar a condiçao de a para que a funçao tenha um maximo,ou seja

y''(\sqrt[3]{a/2})\prec 0...

y''(\sqrt[3]{a/2})=(2.{\sqrt[3]{a/2}}^{3}-2a)/({\sqrt[3]{a/2}}^{3})

(2.(a/2)-2a)/(a/2)\prec 0\Rightarrow 

a-2a\prec (a/2)\Rightarrow -1\prec (1/2)

fato esse que impoe y ter um maximo,pois

y''(\sqrt[3]{a/2})=(2.{\sqrt[3]{a/2}}^{3}-2a)/({\sqrt[3]{a/2}}^{3})

y''(\sqrt[3]{a/2})=(2(a/2)-2a)/(a/2)=2(a-2a)/a=-2\prec 0...

logo y tera maximo no ponto x=\sqrt[3]{a/2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada

Mensagempor guilherme5088 » Sáb Nov 02, 2019 08:31

Acho que vc errou a segunda derivada, f"(x)= 2+2a/x^3.
Além disso, não entendi a parte final da resolução,pois a questão pede pra mostrar que a função NÃO pode ter máximo local para nenhum valor de a
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Derivada

Mensagempor adauto martins » Sáb Nov 02, 2019 11:58

eh,vc esta correto meu caro guilherme.eu erro muito,quando muitos calculos,contas,e usando o LATEX é que erro mesmo.obrigado...vamos entao as questoes:
primeiro o problema pede um valor para a,de tal sorte,que o ponto seja de minimo:

y={x}^{2}+(a/x)

y'=2x-(a/{x}^{2})=(2.{x}^{3}-a)/{x}^{3}(1)

y''=2+(2a/{x}^{3})=2.({x}^{3}+a)/{x}^{3}(2)

y''(2)=2.({2}^{3}+a)/{2}^{3}\succ 0
condiçao para se ter minimo em x=2...

2.(8+a)/8\succ 0\Rightarrow 8+a\succ 4...

a\succ -4...

agora vamos analisar a condiçao de a ser ponto de maximo:

y''(a)\prec 0\Rightarrow

y''(a)=2.({a}^{3}+a)/{a}^{3}\prec 0\Rightarrow

(1+(a/{a}^{3}))\prec 0\Rightarrow

(1/{a}^{2})\prec -1...


{a}^{2}\succ -1\Rightarrow a\succ \sqrt[]{-1}

nessa condiçao a nao pode ser real,logo a nao pode ser ponto de maximo...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada

Mensagempor guilherme5088 » Sáb Nov 02, 2019 12:13

Eu resolvi de outro jeito, não sei se ta certo.
f'(x)=2x^3-a/x^2 igualei a 0 para determinar o ponto crítico, para determinar se esse ponto é de máximo f"(c)<0, sendo que f"(c)=6 que é maior que 0 ou seja por contradição f só tem ponto de mínimo local e isso ocorre quando x=2.
x^3= a/2, a=16.
Posso resolver desse jeito?
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Derivada

Mensagempor adauto martins » Sáb Nov 02, 2019 15:25

"determinar a constante a tal que a função f(x)=x^2+a/x tenha um mínimo local em x=2. Mostre que tal função não pode ter máximo local para nenhum valor de a."
meu caro guilherme,
a questao esta impondo uma condiçao,para se determinar um minimo em x=2...
em funçao desta condiçao,determinamos que a assume valores de a\succ -4,que eu cheguei e vc no que acabaste de concluir...anterormente,cheguei que y tera maximo ou minimo em x=\sqrt[3]{a/2}...logo,para x=2,teriamos

\sqrt[3]{a/2}=2\Rightarrow (a/2)=8...a=16... foi o que vc fez,e esta correto...e que f''(2) é positivo,logo ter minimo...nessas condiçoes esta correto...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada

Mensagempor adauto martins » Sáb Nov 02, 2019 15:36

envei antes,
vamos voltar a questao...

agora vamos testar porque y,nao tem maximo...como vc fez a correçao da minha derivada segunda...

y''(\sqrt[3]{(a/2)})=2+(2a/{\sqrt[3]{(a/2)}}^{3})=2+(2a/(a/2))


y''(\sqrt[3]{(a/2)})=2+4=6\succ 0...
o que mostra que y,so tera minimo,que de sua maneira esta correto...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 979
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron