• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido

exerc.resolvido

Mensagempor adauto martins » Dom Out 27, 2019 15:31

(ENE-escola nacional de engenharia da universidade do brasil,rj-exame de admissao 1955)
pesquisar os maximos e minimos da funçao y=x.ln{x}^{2}.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Dom Out 27, 2019 16:02

soluçao:

calcularemos a derivada de y=f(x) e iguala-la a zero.

y'=x'.ln{x}^{2}+x.(ln{x}^{2})'=0
usamos a "derivada do produto,e usaremos tambem a regra da cadeia,pois ln{x}^{2}
é funçao composta de lnx,{x}^{2}...

y'=ln{x}^{2}+x.(ln{x}^{2})=ln{x}^{2}+x.(1/({x}^{2}).2x)=0

y'=ln{x}^{2}+ 2=0\Rightarrow 2.lnx=-2\Rightarrow 

lnx=-1\Rightarrow x={e}^{-1}...

agora,vamos calcular a derivada segunda,calcula-la no ponto x={e}^{-1}

e verificar se é maximo ou minimo:

temos que:

y'=ln{x}^{2}+x.(ln{x}^{2})
logo:

y''=(ln{x}^{2})'+(x.(ln{x}^{2})'

y''=(1/{x}^{2}).2x+((ln{x}^{2}+2x.(1/{x}^{2})

y''=4x(1/{x}^{2})+ln{x}^{2}=(4/x)+2.lnx

y''({e}^{-1})=4/({e}^{-1})+2.ln{e}^{-1}\succ 0

logo x é ponto de minimo...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Dom Out 27, 2019 19:32

uma correçao:

a funçao lnx=-1
x admite duas soluçoes,pois no dominio de x,podemos ter:
x\succ 0...ou...x\prec 0
logo,teremos dois pontos criticos,a saber:

x={e}^{-1}
que mostramos ser ponto de minimo e,
x=-{e}^{-1}
que e´ ponto de maximo.fica como exercicio...
que é substituir na derivada segunda,ja calculada,e verificar que
y''(-{e}^{-1})\prec 0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Dom Out 27, 2019 19:53

mais uma correçao:
o valores de dominio que me referi anteriormente nao é da y'=lnx=-1 e sim da y=x.ln{x}^{2}
o dominio é da funçao e nao de sua derivada...obrigado,adauto martins
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1032
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: