• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] como essa divisão foi simplificada?

[Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Sáb Set 14, 2019 01:21

Olá, amigos, após 1h batendo a cabeça mais um vez venho pedir ajuda

eu tenho esse limite (já resolvido):

\lim_{x \to a}\frac{(\sin x - \sin a)}{(x - a)} = \frac{2\cos \frac{x + a}{2} \sin \frac{x - a}{2}}{(x - a)} = \frac{\cos \frac{x + a}{2} \sin \frac{x - a}{2}}{\frac{(x - a)}{2}}

Ele foi resolvido dessa forma:

\lim_{x \to a}\frac{(\sin x - \sin a)}{(x - a)} = \cos a \lim_{(x -a) \to 0}\frac{\sin \frac{x - a}{2}}{\frac{(x - a)}{2}} = \cos a

Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a .

Será que eu estou confundindo alguma coisa? Eu tentei entender e realmente não consegui. Obrigado desde já.
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Sáb Set 14, 2019 14:56

Olá GandalfOAzul!

GandalfOAzul escreveu:Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a.


Lembre-se do Limite fundamental:

\boxed{\mathsf{\lim_{x \to 0} \frac{\sin x}{x} = 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1702
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Sáb Set 14, 2019 14:57

Olá GandalfOAzul!

GandalfOAzul escreveu:Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a.


Lembre-se do Limite fundamental:

\boxed{\mathsf{\lim_{x \to 0} \frac{\sin x}{x} = 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1702
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Sáb Set 14, 2019 20:43

Lembre-se do Limite fundamental


Eu não entendi bem o que o Sr. quis dizer.
Quando eu tentei resolver eu cheguei em um resultado assim: \frac{\frac{a}{2}}{-\frac{a}{2}} = -\frac{a\cdot \:2}{2a} = \cos \left(-1\right) =\cos \left(1\right)

Eu tô com um pouco de brain fog, talvez eu deva estudar mais, deixar esse problema de lado e resolver outros exercícios primeiro :$

De toda forma fica registrado meu muito obrigado.

Abraços :guy_hug:
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Ter Set 17, 2019 11:21

GandalfOAzul, revendo minha resposta e sua dúvida, percebo certa distância... Desculpe-me!!

Tem outro caminho... Espero que seja mais fácil de compreender, caso contrário, comente!

Inicialmente, façamos uma mudança de variável. Considere \mathbf{x - a = k}. Assim,

\\ \displaystyle \mathsf{\lim_{x \to a} = \frac{\sin x - \sin a}{x - a} =} \\\\\\ \mathsf{\lim_{x - a \to 0} \frac{\sin (k + a) - \sin a}{(k + a) - a} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin (k + a) - \sin a}{k + a - a} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a + \sin a \cdot \cos k - \sin a}{k} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a + \sin a \cdot \left ( \cos k - 1 \right )}{k} = } \\\\\\ \mathsf{\lim_{k \to 0} \left [ \frac{\sin k \cdot \cos a + \sin a \cdot \left ( \cos k - 1 \right )}{k}  \right ] = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a}{k} + \lim_{k \to 0} \frac{\sin a \cdot \left ( \cos k - 1 \right )}{k} = } \\\\\\ \mathsf{\cos a \cdot \underbrace{\mathsf{\lim_{k \to 0} \frac{\sin k}{k}}}_{limite \ fundamental} + \sin a \cdot \underbrace{\mathsf{\lim_{k \to 0} \frac{\left ( \cos k - 1 \right )}{k}}}_{zero} = } \\\\ \mathsf{\cos a \cdot 1 + \sin a \cdot 0 =} \\\\ \boxed{\mathsf{\cos a}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1702
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Qua Set 18, 2019 12:01

DanielFerreira escreveu:GandalfOAzul, revendo minha resposta e sua dúvida, percebo certa distância... Desculpe-me!!

Tem outro caminho... Espero que seja mais fácil de compreender, caso contrário, comente!


HAHAHA sem problemas. Compreendi melhor agora :-D

Muito obrigado :y:
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.