• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] como essa divisão foi simplificada?

[Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Sáb Set 14, 2019 01:21

Olá, amigos, após 1h batendo a cabeça mais um vez venho pedir ajuda

eu tenho esse limite (já resolvido):

\lim_{x \to a}\frac{(\sin x - \sin a)}{(x - a)} = \frac{2\cos \frac{x + a}{2} \sin \frac{x - a}{2}}{(x - a)} = \frac{\cos \frac{x + a}{2} \sin \frac{x - a}{2}}{\frac{(x - a)}{2}}

Ele foi resolvido dessa forma:

\lim_{x \to a}\frac{(\sin x - \sin a)}{(x - a)} = \cos a \lim_{(x -a) \to 0}\frac{\sin \frac{x - a}{2}}{\frac{(x - a)}{2}} = \cos a

Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a .

Será que eu estou confundindo alguma coisa? Eu tentei entender e realmente não consegui. Obrigado desde já.
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Sáb Set 14, 2019 14:56

Olá GandalfOAzul!

GandalfOAzul escreveu:Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a.


Lembre-se do Limite fundamental:

\boxed{\mathsf{\lim_{x \to 0} \frac{\sin x}{x} = 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Sáb Set 14, 2019 14:57

Olá GandalfOAzul!

GandalfOAzul escreveu:Eu gostaria de saber o porquê disso \frac{\cos \frac{x + a}{2}}{\frac{(x - a)}{2}} ser \cos a.


Lembre-se do Limite fundamental:

\boxed{\mathsf{\lim_{x \to 0} \frac{\sin x}{x} = 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Sáb Set 14, 2019 20:43

Lembre-se do Limite fundamental


Eu não entendi bem o que o Sr. quis dizer.
Quando eu tentei resolver eu cheguei em um resultado assim: \frac{\frac{a}{2}}{-\frac{a}{2}} = -\frac{a\cdot \:2}{2a} = \cos \left(-1\right) =\cos \left(1\right)

Eu tô com um pouco de brain fog, talvez eu deva estudar mais, deixar esse problema de lado e resolver outros exercícios primeiro :$

De toda forma fica registrado meu muito obrigado.

Abraços :guy_hug:
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor DanielFerreira » Ter Set 17, 2019 11:21

GandalfOAzul, revendo minha resposta e sua dúvida, percebo certa distância... Desculpe-me!!

Tem outro caminho... Espero que seja mais fácil de compreender, caso contrário, comente!

Inicialmente, façamos uma mudança de variável. Considere \mathbf{x - a = k}. Assim,

\\ \displaystyle \mathsf{\lim_{x \to a} = \frac{\sin x - \sin a}{x - a} =} \\\\\\ \mathsf{\lim_{x - a \to 0} \frac{\sin (k + a) - \sin a}{(k + a) - a} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin (k + a) - \sin a}{k + a - a} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a + \sin a \cdot \cos k - \sin a}{k} = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a + \sin a \cdot \left ( \cos k - 1 \right )}{k} = } \\\\\\ \mathsf{\lim_{k \to 0} \left [ \frac{\sin k \cdot \cos a + \sin a \cdot \left ( \cos k - 1 \right )}{k}  \right ] = } \\\\\\ \mathsf{\lim_{k \to 0} \frac{\sin k \cdot \cos a}{k} + \lim_{k \to 0} \frac{\sin a \cdot \left ( \cos k - 1 \right )}{k} = } \\\\\\ \mathsf{\cos a \cdot \underbrace{\mathsf{\lim_{k \to 0} \frac{\sin k}{k}}}_{limite \ fundamental} + \sin a \cdot \underbrace{\mathsf{\lim_{k \to 0} \frac{\left ( \cos k - 1 \right )}{k}}}_{zero} = } \\\\ \mathsf{\cos a \cdot 1 + \sin a \cdot 0 =} \\\\ \boxed{\mathsf{\cos a}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Limites] como essa divisão foi simplificada?

Mensagempor GandalfOAzul » Qua Set 18, 2019 12:01

DanielFerreira escreveu:GandalfOAzul, revendo minha resposta e sua dúvida, percebo certa distância... Desculpe-me!!

Tem outro caminho... Espero que seja mais fácil de compreender, caso contrário, comente!


HAHAHA sem problemas. Compreendi melhor agora :-D

Muito obrigado :y:
GandalfOAzul
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 05, 2019 02:16
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 18 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D