• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo 1 limites laterais

calculo 1 limites laterais

Mensagempor guilherme5088 » Sex Set 13, 2019 16:31

\lim_{(-1)+}\sqrt[2]{-9x}+\sqrt[3]{x}-2/x+1
x tende a -1 pela direita
não pode usar l'hospital
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: calculo 1 limites laterais

Mensagempor young_jedi » Dom Set 15, 2019 23:15

\lim_{x\to-1^+}\frac{\sqrt{-9x}+\sqrt[3]{x}-2}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3+\sqrt[3]{x}+1}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3}{x+1}+\frac{\sqrt[3]{x}+1}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3}{x+1}.\frac{\sqrt{-9x}+3}{\sqrt{-9x}+3}+\frac{\sqrt[3]{x}+1}{x+1}.\frac{\sqrt[3]{x}^2-\sqrt[3]{x}+1}{\sqrt[3]{x}^2-\sqrt[3]{x}+1}

\lim_{x\to-1^+}\frac{-9x-9}{(x+1)(\sqrt{-9x}+3)}+\frac{x+1}{(x+1)(\sqrt[3]{x}^2-\sqrt[3]{x}+1)}

\lim_{x\to-1^+}\frac{-9}{(\sqrt{-9x}+3)}+\frac{1}{(\sqrt[3]{x}^2-\sqrt[3]{x}+1)}=\frac{-9}{6}+\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: calculo 1 limites laterais

Mensagempor guilherme5088 » Seg Set 16, 2019 15:14

tava tentando fazer por substituição de variável,mas desse jeito é bem mais fácil. Obrigado pela resposta
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 54 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}