• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo 1 limites laterais

calculo 1 limites laterais

Mensagempor guilherme5088 » Sex Set 13, 2019 16:31

\lim_{(-1)+}\sqrt[2]{-9x}+\sqrt[3]{x}-2/x+1
x tende a -1 pela direita
não pode usar l'hospital
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: calculo 1 limites laterais

Mensagempor young_jedi » Dom Set 15, 2019 23:15

\lim_{x\to-1^+}\frac{\sqrt{-9x}+\sqrt[3]{x}-2}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3+\sqrt[3]{x}+1}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3}{x+1}+\frac{\sqrt[3]{x}+1}{x+1}

\lim_{x\to-1^+}\frac{\sqrt{-9x}-3}{x+1}.\frac{\sqrt{-9x}+3}{\sqrt{-9x}+3}+\frac{\sqrt[3]{x}+1}{x+1}.\frac{\sqrt[3]{x}^2-\sqrt[3]{x}+1}{\sqrt[3]{x}^2-\sqrt[3]{x}+1}

\lim_{x\to-1^+}\frac{-9x-9}{(x+1)(\sqrt{-9x}+3)}+\frac{x+1}{(x+1)(\sqrt[3]{x}^2-\sqrt[3]{x}+1)}

\lim_{x\to-1^+}\frac{-9}{(\sqrt{-9x}+3)}+\frac{1}{(\sqrt[3]{x}^2-\sqrt[3]{x}+1)}=\frac{-9}{6}+\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: calculo 1 limites laterais

Mensagempor guilherme5088 » Seg Set 16, 2019 15:14

tava tentando fazer por substituição de variável,mas desse jeito é bem mais fácil. Obrigado pela resposta
guilherme5088
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Seg Set 02, 2019 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.