• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por Partes] Constante de integração

[Integração por Partes] Constante de integração

Mensagempor KleinIll » Dom Set 01, 2019 14:11

A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu
Бог не в силе, а в правде.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integração por Partes] Constante de integração

Mensagempor DanielFerreira » Qui Set 05, 2019 22:56

KleinIll escreveu:A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu


KleinIll, não precisa! A constante de integração só aparecerá quando você integrar

\mathsf{- \int v \, du}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1697
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Integração por Partes] Constante de integração

Mensagempor KleinIll » Sex Set 06, 2019 18:39

Daniel, a dúvida era exatamente a integração que dá origem ao v da fórmula de integração por partes. Contudo, refiz as contas e descobri que eu tinha ignorado um número. Depois de consertar o erro, as constantes de integração, tanto para v quanto para a integral da fórmula, anularam-se.

Agradeço a atenção.
Бог не в силе, а в правде.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)