• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por Partes] Constante de integração

[Integração por Partes] Constante de integração

Mensagempor KleinIll » Dom Set 01, 2019 14:11

A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu
Бог не в силе, а в правде.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integração por Partes] Constante de integração

Mensagempor DanielFerreira » Qui Set 05, 2019 22:56

KleinIll escreveu:A fórmula de integração por partes separa as funções em duas partes: uma carrega uma função escolhida u e o restante é denominado dv. Para aplicar a fórmula de integração por partes, é necessário integrar dv para encontrar v. Nesta etapa, haverá uma constante de integração. A minha dúvida é: no produto entre u e v, o v deve conter a constante de integração?

uv - \int_{}^{}vdu
v = x + c
u(x+c)-\int_{}^{}x+cdu


KleinIll, não precisa! A constante de integração só aparecerá quando você integrar

\mathsf{- \int v \, du}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1701
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Integração por Partes] Constante de integração

Mensagempor KleinIll » Sex Set 06, 2019 18:39

Daniel, a dúvida era exatamente a integração que dá origem ao v da fórmula de integração por partes. Contudo, refiz as contas e descobri que eu tinha ignorado um número. Depois de consertar o erro, as constantes de integração, tanto para v quanto para a integral da fórmula, anularam-se.

Agradeço a atenção.
Бог не в силе, а в правде.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron