• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de Otimização

Problemas de Otimização

Mensagempor lucasabreuo » Seg Mai 06, 2019 11:52

[Problemas de Otimização]

Prezados, bom dia!

Tenho o seguinte enunciado para resolver.

A soma de dois números positivos é 16. Qual é o menor valor possível para a soma de seus quadrados?

Resolvi assim:

x + y = 16 -> y = 16 - x
S = {x}^{2} + {y}^{2}

Logo:
{x}^{2} + {(16-x)}^{2}

Derivando:
2x - 2 (16 - x)
2x - 32 + 2x
4x - 32

Igualando a 0:
4x - 32 = 0
4x = 32
x = 8

Logo:
x = 8;
x + y = 16
8 + y = 16
y = 8;

Assim:
S = {x}^{2} + {y}^{2}
S = {8}^{2} + {8}^{2}
S = 128 (Resposta final)

A minha dúvida é se a resposta está correta, uma vez que o problema fala em minimizar a soma dos quadrados dos números e não estou certo se fiz corretamente.

Agradeço desde já!
lucasabreuo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 05, 2019 23:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)