• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas de Otimização

Problemas de Otimização

Mensagempor lucasabreuo » Seg Mai 06, 2019 11:52

[Problemas de Otimização]

Prezados, bom dia!

Tenho o seguinte enunciado para resolver.

A soma de dois números positivos é 16. Qual é o menor valor possível para a soma de seus quadrados?

Resolvi assim:

x + y = 16 -> y = 16 - x
S = {x}^{2} + {y}^{2}

Logo:
{x}^{2} + {(16-x)}^{2}

Derivando:
2x - 2 (16 - x)
2x - 32 + 2x
4x - 32

Igualando a 0:
4x - 32 = 0
4x = 32
x = 8

Logo:
x = 8;
x + y = 16
8 + y = 16
y = 8;

Assim:
S = {x}^{2} + {y}^{2}
S = {8}^{2} + {8}^{2}
S = 128 (Resposta final)

A minha dúvida é se a resposta está correta, uma vez que o problema fala em minimizar a soma dos quadrados dos números e não estou certo se fiz corretamente.

Agradeço desde já!
lucasabreuo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 05, 2019 23:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}