• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ASSINTOTA HORIZONTAL

ASSINTOTA HORIZONTAL

Mensagempor iksin » Qua Abr 17, 2019 00:03

Alguém pode me dizer, por gentileza, como calculo a assintota horizontal da seguinte função:

\frac{\sqrt[2]{2x^2+1}}{3x-5}


Teria que multiplicar pelo conjugado do numerador?
iksin
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 11, 2018 16:20
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: ASSINTOTA HORIZONTAL

Mensagempor Baltuilhe » Qua Mai 01, 2019 17:23

iksin escreveu:Alguém pode me dizer, por gentileza, como calculo a assintota horizontal da seguinte função:

\frac{\sqrt[2]{2x^2+1}}{3x-5}


Teria que multiplicar pelo conjugado do numerador?

Boa tarde!

Como o domínio da função x\not=\dfrac{5}{3} podemos analisar se neste ponto teremos a função tendendo ao infinito (pela esquerda e pela direita).
\lim_{x\to\dfrac{5}{3}^{+}}\;\dfrac{\sqrt{2x^2+1}}{3x-5}=+\infty
e
\lim_{x\to\dfrac{5}{3}^{-}}\;\dfrac{\sqrt{2x^2+1}}{3x-5}=-\infty

Bom, localizamos a assíntota vertical.

Agora, a horizontal:
\dfrac{\sqrt{2x^2+1}}{3x-5}=\dfrac{\sqrt{x^2\cdot\left(2+\dfrac{1}{x^2}\right)}}{x\cdot\left(3-\dfrac{5}{x}\right)}=\dfrac{|x|\sqrt{2+\dfrac{1}{x^2}}}{x\cdot\left(3-\dfrac{5}{x}\right)}

Veja que agora o limite ao infinito dará dois valores:
\lim_{x\to+\infty}\;\dfrac{|x|\sqrt{2+\dfrac{1}{x^2}}}{x\cdot\left(3-\dfrac{5}{x}\right)}=\dfrac{\sqrt{2}}{3}
e
\lim_{x\to-\infty}\;\dfrac{|x|\sqrt{2+\dfrac{1}{x^2}}}{x\cdot\left(3-\dfrac{5}{x}\right)}=-\dfrac{\sqrt{2}}{3}

Então, as assíntotas horizontais são:
y=\pm\dfrac{\sqrt{2}}{3}

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?