• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais Parciais

Integrais Parciais

Mensagempor dark_slack » Sáb Dez 15, 2018 11:29

bom dia,
quero resolver esta integral de fração parcial que não consigo achar uma solução:

\int_{}^{}\frac{x^{2}-3x+5}{3x^{3}+x^{2}+x} dx

Quero a atenção de todos!
Obrigado.
dark_slack
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 13, 2018 19:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais Parciais

Mensagempor Gebe » Sáb Dez 15, 2018 22:25

\\
\frac{x^2-3x+5}{3x^3+x^2+x}\\
\\
\frac{x^2-3x+5}{x.(3x^2+x+1)}\\
\\
\frac{A}{x}+\frac{Bx+C}{3x^2+x+1}\\
\\
A(3x^2+x+1)+Bx^2+Cx=x^2-3x+5\\
\\
1.A=5\;\rightarrow\;A=5\\
\\
3.A+B=1\;\rightarrow\;B=1-15=-14\\
\\
1.A+1.C=-3\;\rightarrow\;C=-3-5=-8

A integral fica:
\int\;\left(\frac{5}{x}-\frac{14x+8}{3x^2+x+1}\right)dx

O termo \frac{5}{x} da integral é simples de resolver, vamos então nos concentrar no segundo termo:
\int\;-\frac{14x+8}{3x^2+x+1}dx\\
\\
-2\int\;\frac{7x+4}{3x^2+x+1}dx\\
\\
Completando\;quadrado\;no\;denominador:\\
\\
3x^2+x+1\;\;=\;\;3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}\\
\\
-2\int\;\frac{7x+4}{3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}}dx\\
\\
-\frac{2}{3}\int\;\frac{7x+4}{\left(x+\frac{1}{6}\right)^2+\frac{11}{36}}dx\\
\\
Utilizando \;o \;metodo\; da\; substituicao:\\
\\
u=x+\frac{1}{6}\\
du=dx\\
\\
-\frac{2}{3}\int\;\frac{7u+\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\\
\\
-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)

-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)\\
\\
pela\;tabela\;de\;integrais:\\
\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx=\frac{17}{6}.\frac{1}{\sqrt{\frac{11}{36}}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)=\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\\
\\
\\Por \;substituicao:\\\\
\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx=\frac{7}{2}\int\;\frac{2dx}{\left(u\right)^2+\frac{11}{36}}=\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|

-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)\\
\\
pela\;tabela\;de\;integrais:\\
\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx=\frac{17}{6}.\frac{1}{\sqrt{\frac{11}{36}}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)=\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\\
\\
\\Por \;substituicao:\\\\
\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx=\frac{7}{2}\int\;\frac{2dx}{\left(u\right)^2+\frac{11}{36}}=\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|
\\\\
Juntando\; tudo,\; temos:\\
\\
\int\;\frac{5}{x}dx-\frac{2}{3}\left(\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\;+\;\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|\right)\\
\\
5.ln|x|-\frac{34}{3\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)-\frac{21}{4}ln\left|u^2+\frac{11}{46}\right|\right)
\\
\\
Voltando \;a \;substituicao\; de\; u:
\\

5.ln|x|-\frac{34}{3\sqrt{11}}.arctg\left(\frac{x+\frac{1}{6}}{\sqrt{\frac{11}{36}}}\right)-\frac{21}{4}ln\left|\left(x+\frac{1}{6}\right)^2+\frac{11}{46}\right|\right)

Confira os calculos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 39 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.