• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais Parciais

Integrais Parciais

Mensagempor dark_slack » Sáb Dez 15, 2018 11:29

bom dia,
quero resolver esta integral de fração parcial que não consigo achar uma solução:

\int_{}^{}\frac{x^{2}-3x+5}{3x^{3}+x^{2}+x} dx

Quero a atenção de todos!
Obrigado.
dark_slack
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 13, 2018 19:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integrais Parciais

Mensagempor Gebe » Sáb Dez 15, 2018 22:25

\\
\frac{x^2-3x+5}{3x^3+x^2+x}\\
\\
\frac{x^2-3x+5}{x.(3x^2+x+1)}\\
\\
\frac{A}{x}+\frac{Bx+C}{3x^2+x+1}\\
\\
A(3x^2+x+1)+Bx^2+Cx=x^2-3x+5\\
\\
1.A=5\;\rightarrow\;A=5\\
\\
3.A+B=1\;\rightarrow\;B=1-15=-14\\
\\
1.A+1.C=-3\;\rightarrow\;C=-3-5=-8

A integral fica:
\int\;\left(\frac{5}{x}-\frac{14x+8}{3x^2+x+1}\right)dx

O termo \frac{5}{x} da integral é simples de resolver, vamos então nos concentrar no segundo termo:
\int\;-\frac{14x+8}{3x^2+x+1}dx\\
\\
-2\int\;\frac{7x+4}{3x^2+x+1}dx\\
\\
Completando\;quadrado\;no\;denominador:\\
\\
3x^2+x+1\;\;=\;\;3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}\\
\\
-2\int\;\frac{7x+4}{3\left(x+\frac{1}{6}\right)^2+\frac{11}{12}}dx\\
\\
-\frac{2}{3}\int\;\frac{7x+4}{\left(x+\frac{1}{6}\right)^2+\frac{11}{36}}dx\\
\\
Utilizando \;o \;metodo\; da\; substituicao:\\
\\
u=x+\frac{1}{6}\\
du=dx\\
\\
-\frac{2}{3}\int\;\frac{7u+\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\\
\\
-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)

-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)\\
\\
pela\;tabela\;de\;integrais:\\
\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx=\frac{17}{6}.\frac{1}{\sqrt{\frac{11}{36}}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)=\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\\
\\
\\Por \;substituicao:\\\\
\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx=\frac{7}{2}\int\;\frac{2dx}{\left(u\right)^2+\frac{11}{36}}=\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|

-\frac{2}{3}\left(\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx+\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx\right)\\
\\
pela\;tabela\;de\;integrais:\\
\int\;\frac{\frac{17}{6}}{\left(u\right)^2+\frac{11}{36}}dx=\frac{17}{6}.\frac{1}{\sqrt{\frac{11}{36}}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)=\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\\
\\
\\Por \;substituicao:\\\\
\int\;\frac{7u}{\left(u\right)^2+\frac{11}{36}}dx=\frac{7}{2}\int\;\frac{2dx}{\left(u\right)^2+\frac{11}{36}}=\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|
\\\\
Juntando\; tudo,\; temos:\\
\\
\int\;\frac{5}{x}dx-\frac{2}{3}\left(\frac{17}{\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)\;+\;\frac{7}{2}ln\left|u^2+\frac{11}{46}\right|\right)\\
\\
5.ln|x|-\frac{34}{3\sqrt{11}}.arctg\left(\frac{u}{\sqrt{\frac{11}{36}}}\right)-\frac{21}{4}ln\left|u^2+\frac{11}{46}\right|\right)
\\
\\
Voltando \;a \;substituicao\; de\; u:
\\

5.ln|x|-\frac{34}{3\sqrt{11}}.arctg\left(\frac{x+\frac{1}{6}}{\sqrt{\frac{11}{36}}}\right)-\frac{21}{4}ln\left|\left(x+\frac{1}{6}\right)^2+\frac{11}{46}\right|\right)

Confira os calculos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron