• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites de Integração] Como achar os limites de integração?

[Limites de Integração] Como achar os limites de integração?

Mensagempor Miine_J » Sáb Nov 10, 2018 03:13

Boa noite pessoal.
Então, estou tendo muita dificuldade de achar limites de integração depois de feita uma mudança de variáveis, porque nem sempre sei qual o gráfico que a mudança gera nem sei como se deveria calcular algebricamente. Vejo o pessoal fazendo certos calculos pra achar, mas n entendo qual a lógica, se alguém pudesse explicar seria ótimo. Um exemplo em que não sei como calcular:

1. Use coordenadas polares e calcule as seguintes integrais duplas:

\int_{1}^2 \int_{0}^x (x^2+y^2)^{-1}  dydx

Os exemplos mais "triviais" são okay, mas esses exemplos q precisa de algum calculo ou coisa do tipo n entendo como deve ser feito. Pensei em substituir x^2+y^2 por r^2 mas sinceramente n sei oq fzr dps dai
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Gebe » Sáb Nov 10, 2018 17:36

Antes, convém lembrar que em coordenadas polares:
\\
x=rcos(\theta)\\
y=rsen(\theta)\\
\sqrt[]{x^2+y^2}=r\\
dxdy=rd\theta dr

Temos duas formas para avaliar essa integral, uma é redesenhar a figura a partir das integrais dadas e então reescrever as integrais nas novas coordenadas, já a outra forma é fazer a substituição das variaveis diretamente.
A segunda normalmente é menos trabalhosa, mas nem sempre.

Vamos fazer utilizando a susbstituição.

Como tu sugeriu, a função fica 1/r², precisamos então mudar os limites.

Os limites da variavel "y" são [0 , x], logo:
\\
0\leq y\leq x\\
Substituindo:\\
0\leq rsen\theta \leq rcos\theta\\
\\
O\;limite\;à\;esquerda\;permanece\;inalterado\;(origem\;do\;sistema)\\
à \;direita:\\
rsen\theta \leq rcos\theta\\
\theta \leq \frac{\pi}{4}

Agora passamos para os limites de "x", [1 , 2]:
\\
1\leq x\leq 2\\
Substituindo:\\
1\leq rcos\theta \leq 2\\
\\
Perceba\;que\;já\;temos\;o\;valor\;de\;\theta=\frac{\pi}{4},\;logo:\\
1\leq rcos\frac{\pi}{4} \leq 2\\
\\
à \;esquerda:\\
1\leq rcos\frac{\pi}{4}\\
r \geq \sqrt[]{2}\\
\\
à \;direita:\\
rcos\frac{\pi}{4}\leq 2\\
r \leq 2\sqrt[]{2}\\
\\

Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Miine_J » Dom Nov 11, 2018 08:17

Gebe escreveu:
Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.


Sim, obrigada, ajudou sim!
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.