• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites de Integração] Como achar os limites de integração?

[Limites de Integração] Como achar os limites de integração?

Mensagempor Miine_J » Sáb Nov 10, 2018 03:13

Boa noite pessoal.
Então, estou tendo muita dificuldade de achar limites de integração depois de feita uma mudança de variáveis, porque nem sempre sei qual o gráfico que a mudança gera nem sei como se deveria calcular algebricamente. Vejo o pessoal fazendo certos calculos pra achar, mas n entendo qual a lógica, se alguém pudesse explicar seria ótimo. Um exemplo em que não sei como calcular:

1. Use coordenadas polares e calcule as seguintes integrais duplas:

\int_{1}^2 \int_{0}^x (x^2+y^2)^{-1}  dydx

Os exemplos mais "triviais" são okay, mas esses exemplos q precisa de algum calculo ou coisa do tipo n entendo como deve ser feito. Pensei em substituir x^2+y^2 por r^2 mas sinceramente n sei oq fzr dps dai
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Gebe » Sáb Nov 10, 2018 17:36

Antes, convém lembrar que em coordenadas polares:
\\
x=rcos(\theta)\\
y=rsen(\theta)\\
\sqrt[]{x^2+y^2}=r\\
dxdy=rd\theta dr

Temos duas formas para avaliar essa integral, uma é redesenhar a figura a partir das integrais dadas e então reescrever as integrais nas novas coordenadas, já a outra forma é fazer a substituição das variaveis diretamente.
A segunda normalmente é menos trabalhosa, mas nem sempre.

Vamos fazer utilizando a susbstituição.

Como tu sugeriu, a função fica 1/r², precisamos então mudar os limites.

Os limites da variavel "y" são [0 , x], logo:
\\
0\leq y\leq x\\
Substituindo:\\
0\leq rsen\theta \leq rcos\theta\\
\\
O\;limite\;à\;esquerda\;permanece\;inalterado\;(origem\;do\;sistema)\\
à \;direita:\\
rsen\theta \leq rcos\theta\\
\theta \leq \frac{\pi}{4}

Agora passamos para os limites de "x", [1 , 2]:
\\
1\leq x\leq 2\\
Substituindo:\\
1\leq rcos\theta \leq 2\\
\\
Perceba\;que\;já\;temos\;o\;valor\;de\;\theta=\frac{\pi}{4},\;logo:\\
1\leq rcos\frac{\pi}{4} \leq 2\\
\\
à \;esquerda:\\
1\leq rcos\frac{\pi}{4}\\
r \geq \sqrt[]{2}\\
\\
à \;direita:\\
rcos\frac{\pi}{4}\leq 2\\
r \leq 2\sqrt[]{2}\\
\\

Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Miine_J » Dom Nov 11, 2018 08:17

Gebe escreveu:
Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.


Sim, obrigada, ajudou sim!
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: