• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites de Integração] Como achar os limites de integração?

[Limites de Integração] Como achar os limites de integração?

Mensagempor Miine_J » Sáb Nov 10, 2018 03:13

Boa noite pessoal.
Então, estou tendo muita dificuldade de achar limites de integração depois de feita uma mudança de variáveis, porque nem sempre sei qual o gráfico que a mudança gera nem sei como se deveria calcular algebricamente. Vejo o pessoal fazendo certos calculos pra achar, mas n entendo qual a lógica, se alguém pudesse explicar seria ótimo. Um exemplo em que não sei como calcular:

1. Use coordenadas polares e calcule as seguintes integrais duplas:

\int_{1}^2 \int_{0}^x (x^2+y^2)^{-1}  dydx

Os exemplos mais "triviais" são okay, mas esses exemplos q precisa de algum calculo ou coisa do tipo n entendo como deve ser feito. Pensei em substituir x^2+y^2 por r^2 mas sinceramente n sei oq fzr dps dai
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Gebe » Sáb Nov 10, 2018 17:36

Antes, convém lembrar que em coordenadas polares:
\\
x=rcos(\theta)\\
y=rsen(\theta)\\
\sqrt[]{x^2+y^2}=r\\
dxdy=rd\theta dr

Temos duas formas para avaliar essa integral, uma é redesenhar a figura a partir das integrais dadas e então reescrever as integrais nas novas coordenadas, já a outra forma é fazer a substituição das variaveis diretamente.
A segunda normalmente é menos trabalhosa, mas nem sempre.

Vamos fazer utilizando a susbstituição.

Como tu sugeriu, a função fica 1/r², precisamos então mudar os limites.

Os limites da variavel "y" são [0 , x], logo:
\\
0\leq y\leq x\\
Substituindo:\\
0\leq rsen\theta \leq rcos\theta\\
\\
O\;limite\;à\;esquerda\;permanece\;inalterado\;(origem\;do\;sistema)\\
à \;direita:\\
rsen\theta \leq rcos\theta\\
\theta \leq \frac{\pi}{4}

Agora passamos para os limites de "x", [1 , 2]:
\\
1\leq x\leq 2\\
Substituindo:\\
1\leq rcos\theta \leq 2\\
\\
Perceba\;que\;já\;temos\;o\;valor\;de\;\theta=\frac{\pi}{4},\;logo:\\
1\leq rcos\frac{\pi}{4} \leq 2\\
\\
à \;esquerda:\\
1\leq rcos\frac{\pi}{4}\\
r \geq \sqrt[]{2}\\
\\
à \;direita:\\
rcos\frac{\pi}{4}\leq 2\\
r \leq 2\sqrt[]{2}\\
\\

Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Limites de Integração] Como achar os limites de integra

Mensagempor Miine_J » Dom Nov 11, 2018 08:17

Gebe escreveu:
Agora podemos montar as integrais:
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r^2}rd\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\int_{0}^{\frac{\pi}{4}}\frac{1}{r}d\theta dr\\
\\
\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\left\frac{\theta}{r}\right|_{0}^{\frac{\pi}{4}} dr
\\
\frac{\pi}{4}\int_{\sqrt[]{2}}^{2\sqrt[]{2}}\frac{1}{r} dr\\
\\
\frac{\pi}{4}\left(ln\left|2\sqrt[]{2} \right|-ln\left|\sqrt[]{2} \\
\\\right| \right)\\
\\
\frac{\pi}{4}\left(ln\left(2\sqrt[]{2} \right)-ln\left(\sqrt[]{2} \\
\\\right) \right)\\
\\
\frac{\pi}{4}ln(2)

Espero ter ajudado, qualquer duvida deixe msg.


Sim, obrigada, ajudou sim!
Miine_J
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Nov 10, 2018 02:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59