• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Identificação por partes e por substituição

Identificação por partes e por substituição

Mensagempor lufer17 » Qui Out 25, 2018 21:26

Existe método de identificação quando usar a integrar por partes ou por substituição, só observar a equação ?
lufer17
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 20, 2018 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: ENG
Andamento: formado

Re: Identificação por partes e por substituição

Mensagempor Gebe » Sex Out 26, 2018 05:31

Não, a dica é sempre tentar simplificar a integral caso ela não se encaixe diretamente em um metodo conhecido, com tempo e muitos exercicios feitos tu vai ter já uma noção melhor de como atacar melhor o problema e/ou se será necessario aplicar a integral por partes.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.