• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral sin^3(x) formula?

Integral sin^3(x) formula?

Mensagempor lufer17 » Sáb Out 20, 2018 12:00

Bom dia a todos eu gostaria que alguém me ajudasse entender sobre cálculo de integral.
No meu caso Tem uma parte qualidade de entender o seguinte cálculo integral e se existe alguma fórmula relacionada a isso?

∫((sin^3(x))
lufer17
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 20, 2018 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: ENG
Andamento: formado

Re: Integral sin^3(x) formula?

Mensagempor Gebe » Sáb Out 20, 2018 15:38

Essa integral pode ser calculada via integração por partes, no entanto tu podes usar as formulas de recorrencia.
Essas formulações são simples generalizações feitas para facilitar e tornar mais rapido o calculo utilizando a int por partes.
Segue abaixo uma tabela.
recorrencia.png
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Integral sin^3(x) formula?

Mensagempor lufer17 » Qui Out 25, 2018 21:18

Muito obrigado
lufer17
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Out 20, 2018 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: ENG
Andamento: formado

Re: Integral sin^3(x) formula?

Mensagempor JBSena » Qua Nov 21, 2018 09:11

[tex]\int_{}^{}{Sin{x}}^{3}dx

\int_{}^{}({1-Cos{x}}^{2})Sin(x)dx

faça u=Cos(x)\rightarrow du=-Sin(x)dx\rightarrow dx=\frac{-1}{Sin(x)}du

\int_{}^{}(1-{u}^{2})*Sin(x)*(\frac{-1}{Sin(x)})du

\int_{}^{}({u}^{2}-1)du

\int_{}^{}{u}^{2}du-\int_{}^{}du

({u}^{3}/3)-u+C

voltando para a variável x

({Cos(x)}^{3}/3)-Cos(x)+C
JBSena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 16, 2018 22:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.