• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral sin^3(x) formula?

Integral sin^3(x) formula?

Mensagempor lufer17 » Sáb Out 20, 2018 12:00

Bom dia a todos eu gostaria que alguém me ajudasse entender sobre cálculo de integral.
No meu caso Tem uma parte qualidade de entender o seguinte cálculo integral e se existe alguma fórmula relacionada a isso?

∫((sin^3(x))
lufer17
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 20, 2018 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: ENG
Andamento: formado

Re: Integral sin^3(x) formula?

Mensagempor Gebe » Sáb Out 20, 2018 15:38

Essa integral pode ser calculada via integração por partes, no entanto tu podes usar as formulas de recorrencia.
Essas formulações são simples generalizações feitas para facilitar e tornar mais rapido o calculo utilizando a int por partes.
Segue abaixo uma tabela.
recorrencia.png
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Integral sin^3(x) formula?

Mensagempor lufer17 » Qui Out 25, 2018 21:18

Muito obrigado
lufer17
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 20, 2018 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: ENG
Andamento: formado

Re: Integral sin^3(x) formula?

Mensagempor JBSena » Qua Nov 21, 2018 09:11

[tex]\int_{}^{}{Sin{x}}^{3}dx

\int_{}^{}({1-Cos{x}}^{2})Sin(x)dx

faça u=Cos(x)\rightarrow du=-Sin(x)dx\rightarrow dx=\frac{-1}{Sin(x)}du

\int_{}^{}(1-{u}^{2})*Sin(x)*(\frac{-1}{Sin(x)})du

\int_{}^{}({u}^{2}-1)du

\int_{}^{}{u}^{2}du-\int_{}^{}du

({u}^{3}/3)-u+C

voltando para a variável x

({Cos(x)}^{3}/3)-Cos(x)+C
JBSena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 16, 2018 22:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59