• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Volumes de sólidos por rotação] Volume mudando os eixos

[Volumes de sólidos por rotação] Volume mudando os eixos

Mensagempor Edmond Dantes » Sáb Out 20, 2018 11:31

Posso sempre mudar os eixos quando vou calcular o volume dos solidos?
https://imgur.com/Urx9iuw
Edmond Dantes
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jun 10, 2018 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Volumes de sólidos por rotação] Volume mudando os eixos

Mensagempor Gebe » Sáb Out 20, 2018 15:47

Nesse exemplo que tu colocou não há mudança de eixo, tu apenas girou o desenho 90° e espelhou, portanto não há problema algum, é apenas uma outra perspectiva do mesmo desenho.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Volumes de sólidos por rotação] Volume mudando os eixos

Mensagempor Edmond Dantes » Sáb Out 20, 2018 16:40

É o que eu tentei dizer, Gebe

Obrigado pela resposta!
Edmond Dantes
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jun 10, 2018 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.