• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas parciais com neperiano e seno.

Derivadas parciais com neperiano e seno.

Mensagempor iksin » Qui Set 20, 2018 14:20

Boa tarde, pessoal. :) Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)
iksin
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 11, 2018 16:20
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Derivadas parciais com neperiano e seno.

Mensagempor Gebe » Qui Set 20, 2018 14:39

iksin escreveu:Boa tarde, pessoal. :) Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)


Regra da cadeia. Quando tu deriva u(t,x) em 'x' temos uma função do tipo c.sen(kx), onde ' c = e^(-a²k²t) ' é uma constante e 'kx' é uma função de 'x', sendo assim utilizamos a regra da cadeia:

Chamando kx = z(x)
u = c.sen(kx)
\\
u_x=\frac{u(z)}{dz}\frac{z(x)}{dx}=c.cos\left( u(z) \right).k\\
\\
Voltando\;a\;substituição\;:\\
\\
u_x=e^{-a^2k^2t}.cos\left( kx \right).k
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: