• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas parciais com neperiano e seno.

Derivadas parciais com neperiano e seno.

Mensagempor iksin » Qui Set 20, 2018 14:20

Boa tarde, pessoal. :) Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)
iksin
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 11, 2018 16:20
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: Derivadas parciais com neperiano e seno.

Mensagempor Gebe » Qui Set 20, 2018 14:39

iksin escreveu:Boa tarde, pessoal. :) Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)


Regra da cadeia. Quando tu deriva u(t,x) em 'x' temos uma função do tipo c.sen(kx), onde ' c = e^(-a²k²t) ' é uma constante e 'kx' é uma função de 'x', sendo assim utilizamos a regra da cadeia:

Chamando kx = z(x)
u = c.sen(kx)
\\
u_x=\frac{u(z)}{dz}\frac{z(x)}{dx}=c.cos\left( u(z) \right).k\\
\\
Voltando\;a\;substituição\;:\\
\\
u_x=e^{-a^2k^2t}.cos\left( kx \right).k
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 139
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}