por iksin » Qui Set 20, 2018 14:20
Boa tarde, pessoal.

Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)
-
iksin
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Set 11, 2018 16:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por Gebe » Qui Set 20, 2018 14:39
iksin escreveu:Boa tarde, pessoal.

Estou com duvida na resolução do seguinte exercicio: *Verifique se a função u = e^(-a²k²t)senkx é solução da equação de condução de calor dada por ut = a²uxx.*
Achei uma resolução onde: ut= -a²k²e^(-a²k²t)senkx --> -a²k²u e ux=ke^(-a²k²t)coskx ---> uxx= -k²e^(-a²k²t)senkx
Minha duvida é por que em ux o *k* vai para frente de *e* se esta sendo derivado em relação a x... (Sei que devia saber disso nesse ponto, mas estou com muitas dificuldades, se alguem puder explicar ficaria extremamente grato.)
Regra da cadeia. Quando tu deriva u(t,x) em 'x' temos uma função do tipo c.sen(kx), onde ' c = e^(-a²k²t) ' é uma constante e 'kx' é uma função de 'x', sendo assim utilizamos a regra da cadeia:
Chamando kx = z(x)
u = c.sen(kx)

-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas parciais
por john » Ter Fev 15, 2011 15:37
- 7 Respostas
- 6579 Exibições
- Última mensagem por john

Sáb Fev 19, 2011 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por baianinha » Ter Jul 05, 2011 00:50
- 1 Respostas
- 2564 Exibições
- Última mensagem por MarceloFantini

Ter Jul 05, 2011 03:53
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS
por allyourwishes » Seg Jul 13, 2015 11:24
- 0 Respostas
- 2342 Exibições
- Última mensagem por allyourwishes

Seg Jul 13, 2015 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por caarolsnp » Sex Out 13, 2017 11:40
- 0 Respostas
- 4234 Exibições
- Última mensagem por caarolsnp

Sex Out 13, 2017 11:40
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] DERIVADAS PARCIAIS
por montanha » Seg Ago 04, 2008 10:18
- 5 Respostas
- 12927 Exibições
- Última mensagem por admin

Sex Ago 08, 2008 15:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.