• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema basico de fisica usando derivadas

problema basico de fisica usando derivadas

Mensagempor iksin » Ter Set 11, 2018 16:29

Pessoal, estou com dificuldades nessa questão. Pensei em utilizar a função horaria do espaço, mas sua derivada não daria o que o problema pede. Sinceramente não sei como resolver, se alguem puder me dar uma dica do que fazer ficaria imensamente grato. :$ :$ :$ :$
Um homem em um barco a remo se encontra a 5 km do ponto mais próximo de A, situado as margens,que é reta e deseja alcançar o ponto B, a 6 km de A, ao longo da margem, no mais curto espaço de tempo.Onde deverá atracar sabendo que pode remar a 2 km/h e andar a 4 km/h?
iksin
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 11, 2018 16:20
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: problema basico de fisica usando derivadas

Mensagempor Gebe » Ter Set 11, 2018 17:38

Bem, na minha opnião o enunciado não é claro quanto a situação, no entanto acho que o entuito era o que represento no desenho abaixo.
Ps.: percebi só agora que o "6Km" ficou mal posicionado. O "6Km" é a distancia AB e não AX :y:
Sem título.png
Sem título.png (3.42 KiB) Exibido 5959 vezes


No desenho veos que o rapaz está em uma margem de um rio com largura de 5Km e quer chegar em um ponto B a 6Km do ponto A localizados na outra margem.
Como vemos no desenho, a linha da trajetoria do barco o ponto onde vai atracar (x) forma um triangulo retangulo, sendo 'h' a hipotenusa.
Perceba tambem que a diferença (6-x) representa a distancia que será percorrida andando.
teremos então que a distancia total percorrida será dada por h + (6-x) como mostrado abaixo:
\\
Distancia\;total=h+(6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+5^5} + (6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+25} + (6-x)

Como estamos interessados no tempo, vamos dividir cada trecho pela sua respectiva velocidade:
\\
t(x)=\frac{Dist_{barco}}{Vel_{barco}} + \frac{Dist_{pe}}{Vel_{pe}}\\
\\
t(x) = \frac{\sqrt[]{x^2+25}}{2} + \frac{(6-x)}{4}

Por fim temos que achar 'x' que minimiza o tempo gasto. Para isso igualamos a derivada primeira da função t(x):
\\
\frac{d\left( t(x) \right)}{dx}=\frac{x}{2\sqrt[]{x^2+25}}-1/4\\
\\
\frac{x}{2\sqrt[]{x^2+25}}-1/4=0\\
\\
4x^2 = x^2+25\\
\\
x = \frac{5\sqrt[]{3}}{3}

Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 32 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D