• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problemas usando derivadas

Re: problemas usando derivadas

Mensagempor Gebe » Sex Set 28, 2018 23:01

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Feliz dia dos Professores!!

Mensagempor ezidia51 » Seg Out 15, 2018 17:18

Olá só passando por aqui para agradecer toda ajuda que vc tem me dado nos exercícios e desejar um Feliz dia dos professores!! Segue anexo um cálculo especial para vc ,meu professor de matemática aqui no fórum.Obrigado por tudo mesmo!!!Abraços!!
Anexos
P_20181015_112626.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Seg Out 15, 2018 22:26

Haha gostei! Obrigado por lembrar, é sempre bom poder compartilhar o conhecimento, mais ainda quando há reconhecimento. Bons estudos! :y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Seg Out 15, 2018 22:30

:y: :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Parametrização de curvas

Mensagempor ezidia51 » Sex Out 19, 2018 17:08

Olá vc poderia me ajudar a resolver estes problemas?Como faço este cálculo de parametrização de curvas?
4-Obtenha uma parametrização para a curva de equação geral
9{x}^{2}+5{y}^{2}=1
Segue possiveis respostas no anexo,mas gostaria de saber como é feito este cálculo.
3-Qual é a melhor representação geométrica do domínio da função ?(Como faço para representar geometricamente o dominio desta função?)
f(x,y)=\sqrt[2]{y-{x}^{2}}

Obrigado
Anexos
P_20181019_154744.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

exercícios com gráficos

Mensagempor ezidia51 » Sex Out 19, 2018 17:24

Se vc puder dar uma olhada nestes outros exercícios ,eu fico muito agradecida!!
Anexos
P_20181019_161127.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sáb Out 20, 2018 00:56

Sobre as 3 questões (ultima postagem):
1)
Se formos determinar as superfícies de nível neste caso teremos planos no R³.
Lembrando a equação geral do plano: ax+by+cz+d=0
Podemos ver isso achando algumas destas superfícies, veja:
\\
s_{0}:\;2x-3y+5z-1=0\\
\\
s_{1}:\;2x-3y+5z-1=1\\
s_{1}:\;2x-3y+5z-2=0\\
\\
s_{2}:\;2x-3y+5z-1=2\\
s_{2}:\;2x-3y+5z-3=0\\

Como podemos ver estas superfícies tem formulação semelhante a eq. geral do plano.

2)
A equação geral de elipses é: \frac{y^2}{a^2}+\frac{x^2}{b^2} = 1, sendo "a" a ordenada e "b" a abscissa.
O enunciado pede a curva de nivel 4, portanto teremos:
\\
16x^2+9y^2-140=4\\
\\
16x^2+9y^2=144\\
\\
\frac{16}{144}x^2+\frac{9}{144}y^2=1\\
\\
\frac{1}{9}x^2+\frac{1}{16}y^2=1\\
\\
\frac{x^2}{3^2}+\frac{y^2}{4^2}=1

Logo elipse com ordenada 4 e abscissa 3 (Letra E).

3) Nessa não entendi o que está escrito no enunciado "...conjunto dos pontos em que ? ...".
Mas o grafico desta função lembra uma cela de cavalo, pode ver no link abaixo.
https://www.google.com/search?q=x%5E2-y%5E2&client=firefox-b&source=lnms&sa=X&ved=0ahUKEwiMw-W38JPeAhUBgpAKHWqEAxAQ_AUICSgA&biw=1366&bih=650&dpr=1


Sobre a outra postagem:
4)
Pela equação é possível identifica-la como uma elipse.
Podemos "arrumar" a equação da seguinte forma:
\\
9x^2+5y^2=1\\
\\
\frac{x^2}{\frac{1}{3^2}}+\frac{y^2}{\frac{1}{\sqrt[]{5}^2}}=1\\
\\
\left(\frac{x}{\frac{1}{3}} \right)^2+\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2=1\\
\\

Se fizermos a troca:
\\
A^2=\left(\frac{x}{\frac{1}{3}} \right)^2\\
B^2 =\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2
\\

Ficamos com A² + B² = 1
Podemos ver a semelhança entre essa formulação e a identidade trigonométrica cos²t + sen²t = 1.
Vamos então "forçar" esta semelhança:
\\
A^2 = cos^2t\\
A = cos\;t\\
\left(\frac{x}{\frac{1}{3}} \right)=cos\;t\\
\\
x = \frac{1}{3}cos\;t\\
\\
\\
B^2 = sen^2t\\
B = sen\;t\\
\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)=sen\;t\\
\\
y = \frac{1}{\sqrt[]{5}}sen\;t\\

Resp: \gamma(t) = \left(\frac{1}{3}cos\;t\;,\;\frac{\sqrt[]{5}}{5}sen\;t \right)

3)
Precisamos lembrar que nas funções reais só podemos ter valores maiores ou iguais a zero, logo:
\\
y-x^2\geq0\\
\\
y \geq x^2

Como podemos ver o domínio da função f(x,y) está acima da parábola y=x².
Como a imagem da função está no R³ e não temos restrições para z, o domínio será então uma "calha" formada por parábolas y=x² ao longo do eixo z.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sáb Out 20, 2018 23:44

Um super muito obrigado.Quanto ao exercício que vc não entendeu segue aqui a pergunta:
Considere a função f(x,y)={x}^{2}-{y}^{2}. Sobre o conjunto dos pontos em que vale , é correto afirmar:
a-é um par de retas que passam pela origem
b-É uma circunferência de centro na origem.
c-Nenhuma das alternativas.
d-É formado por exatamente uma reta.
e-É formado por um único ponto.
Como vc me mostrou no gráfico trata-se de uma hiperbole então a resposta correta aqui seria a letra a?
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Dom Out 21, 2018 01:03

Agora me pego, realmente não sei o que o enunciado quer dizer com isso, parece que está falando do dominio da função, mas nesse caso a resposta seria "nenhuma das altern", ja que a função está definida para todo R² (todo x e y).
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Dom Out 21, 2018 16:34

:y: :y: :y: :y: :y: Muito muito obrigado !!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor ezidia51 » Seg Out 22, 2018 00:07

Olá estou com uma dúvida:Neste exercício da parametrização para a curva 9x^2+5y^2=1 a resposta não seria (nenhuma das alternativas)porque o valor final é \frac{1}{3}cos(t),\frac{1}{\sqrt[]{5}}? (segue anexo o exercício)
Anexos
P_20181019_154744.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Seg Out 22, 2018 01:02

Os dois resultados são idênticos, se multiplicar o numerador e o denominador por \sqrt[]{5} chega-se no formato da alternativa.
\\
\frac{1}{\sqrt[]{5}}sent\\
\\
\frac{1}{\sqrt[]{5}}sent*\frac{\sqrt[]{5}}{\sqrt[]{5}}\\
\\
\frac{\sqrt[]{5}}{\left(\sqrt[]{5} \right)^2}sent\\
\\
\frac{\sqrt[]{5}}{5}sent

Aproveitando, tem só um detalhe que falta no gabarito, o intervalo do parâmetro.
Perceba que para formar a elipse o parâmetro "t" deve estar em um intervalo de 2Pi.
Menos que isso não formamos a elipse e mais que isso começamos a sobrescrever a elipse.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Ter Out 23, 2018 00:12

ok entendi agora muito obrigado!! :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

problemas com duas variáveis

Mensagempor ezidia51 » Qua Out 24, 2018 22:53

Olá vc poderia me ajudar com estes problemas de duas variáveis?Segue anexo as fotos (onde coloquei o x é a resposta mas acho que está errada).Obrigada
Anexos
P_20181024_213506.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor ezidia51 » Qua Out 24, 2018 22:54

P_20181024_213449.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor ezidia51 » Qua Out 24, 2018 22:57

P_20181024_213422.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Qui Out 25, 2018 04:15

Continuidade/Limites com multiplas variaveis pode ser consideravelmente mais complicado. Por exemplo, não temos a facilidade da regra de l'Hopital.
Por esse motivo, temos dois tipos comuns de questões, um no qual temos que primeiro simplificar a função de alguma forma e outra onde tentamos mostrar que o limite não existe.

Lembrando: para que seja continua em (2,2), f(2,2) = lim[2,2] f(x,y), ou seja:
\\
L = \lim_{(x,y)\rightarrow(2,2)}\frac{x-y}{x^3-y^3}
Se fizermos a simples substituição dos valores dados (2,2), temos uma indeterminação 0/0.
Nesta questão (6) temos um exemplo de questão que a simplicação pode ser feita.

Podemos tentar dividir o polinomio do denominador pelo polinomio do numerador, já que o denominador tem ordem maior.
Essa divisão dará como resultado:
\\
f(x,y)=\frac{1}{x^2+y^2+xy}

Perceba que agora a indeterminação não existe mais e o limite vale 1/12. (Nenhuma das alternativas).

Quanto as questões 4 e 5. Não acho que as restrições no dominio tenham efeito na resposta.
\\
\frac{\partial^2f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial y}\left(\frac{\partial f(x,y)}{\partial x} \right)\\
\\
=\frac{\partial}{\partial y}\left(3x^2cos\left(\frac{1}{y} \right) \right)\\
\\
=\left(3x^2 \right)*-\frac{1}{y^2}*-sen\left( \frac{1}{y} \right)\\
\\
=\frac{3x^2}{y^2}sen\left(\frac{1}{y} \right)
Resp: Nenhuma das alternativas
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Qui Out 25, 2018 13:55

:y: :y: :y: :y: :y: Um super muito obrigado!!!Agora me esclareceu um pouco .Valeu mesmo!!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Maisa_Rany » Ter Nov 06, 2018 21:13

Boa noite!

Como ficou a resposta final?

Obrigada!
Maisa_Rany
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Out 25, 2018 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Anterior

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.