• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular a integral indefinida por substituição

Como calcular a integral indefinida por substituição

Mensagempor Therodrigou » Dom Ago 26, 2018 23:13

Olá! alguém poderia me ajudar a cálcular essa integral indefinida por substituição:

\int \frac{_{ }1}{\sqrt{x^2\pm a^2}}^{ }\:dx

Gabarito:

Ln\:|\:x\:+\:\sqrt{x^2\pm a^2}\:|\:+\:k

Obrigado!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Como calcular a integral indefinida por substituição

Mensagempor Gebe » Seg Ago 27, 2018 10:40

Parece que tem um erro no gabarito.
Na minha resolução aparece dentro do Ln um fator (1/a) multiplicando.
Vou deixar abaixo e tu da uma conferida e segue tambem um link do wolframalpha onde conferi a solução:
http://www.wolframalpha.com/input/?i=derivative&assumption=%7B%22F%22,+%22Derivative%22,+%22derivativefunction%22%7D+-%3E%22ln%7Cx%2Fa%2B(1%2Fa)*(x%5E2-a%5E2)%5E(1%2F2)%7C%22&assumption=%7B%22F%22,+%22Derivative%22,+%22derivativevariable%22%7D+-%3E%22x%22&assumption=%7B%22C%22,+%22derivative%22%7D+-%3E+%7B%22Calculator%22%7D

Resolução
Utilizando como base esse esquema:
subs trig.png


Escolhendo trabalhar com o "+a" (pode fazer posteriormente com o "-a" pra ver que só mudará o sinal na raiz):
\\
\sqrt[]{x^2+a^2} = asec\theta\\
\\
x = atg\theta\\
\\
dx = asec^2xd\theta\\
\\
Substituindo\;na\;integral:\\
\\
\int_{}^{}\frac{asec^2xd\theta}{asec\theta}\\
\\
\int_{}^{}sec\theta d\theta\\
\\
Esta\;integral\;é\;tabelada\;e\;igual\;a:\\
\\
Ln|sec\theta+tg\theta|+K\\
\\
Voltando\;com\;os\;valores\;originais:\\
\\
Ln\left| sec\left(sec^-1\left(\frac{\sqrt[]{x^2+a^2}}{a} \right) \right)+tg\left(tg^-1\left( \frac{x}{a} \right) \right)\right|+K\\
\\
\\
Ln\left|\frac{1}{a}\left(\sqrt[]{x^2+a^2} + x \right) \right|+k

Como dito anteriormente, fazendo com "-a²" só vai mudar o sinal do "a²" dentro da raiz.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 157
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Como calcular a integral indefinida por substituição

Mensagempor Therodrigou » Ter Ago 28, 2018 00:23

vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: