• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular a integral indefinida por substituição

Como calcular a integral indefinida por substituição

Mensagempor Therodrigou » Dom Ago 26, 2018 23:13

Olá! alguém poderia me ajudar a cálcular essa integral indefinida por substituição:

\int \frac{_{ }1}{\sqrt{x^2\pm a^2}}^{ }\:dx

Gabarito:

Ln\:|\:x\:+\:\sqrt{x^2\pm a^2}\:|\:+\:k

Obrigado!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Como calcular a integral indefinida por substituição

Mensagempor Gebe » Seg Ago 27, 2018 10:40

Parece que tem um erro no gabarito.
Na minha resolução aparece dentro do Ln um fator (1/a) multiplicando.
Vou deixar abaixo e tu da uma conferida e segue tambem um link do wolframalpha onde conferi a solução:
http://www.wolframalpha.com/input/?i=derivative&assumption=%7B%22F%22,+%22Derivative%22,+%22derivativefunction%22%7D+-%3E%22ln%7Cx%2Fa%2B(1%2Fa)*(x%5E2-a%5E2)%5E(1%2F2)%7C%22&assumption=%7B%22F%22,+%22Derivative%22,+%22derivativevariable%22%7D+-%3E%22x%22&assumption=%7B%22C%22,+%22derivative%22%7D+-%3E+%7B%22Calculator%22%7D

Resolução
Utilizando como base esse esquema:
subs trig.png


Escolhendo trabalhar com o "+a" (pode fazer posteriormente com o "-a" pra ver que só mudará o sinal na raiz):
\\
\sqrt[]{x^2+a^2} = asec\theta\\
\\
x = atg\theta\\
\\
dx = asec^2xd\theta\\
\\
Substituindo\;na\;integral:\\
\\
\int_{}^{}\frac{asec^2xd\theta}{asec\theta}\\
\\
\int_{}^{}sec\theta d\theta\\
\\
Esta\;integral\;é\;tabelada\;e\;igual\;a:\\
\\
Ln|sec\theta+tg\theta|+K\\
\\
Voltando\;com\;os\;valores\;originais:\\
\\
Ln\left| sec\left(sec^-1\left(\frac{\sqrt[]{x^2+a^2}}{a} \right) \right)+tg\left(tg^-1\left( \frac{x}{a} \right) \right)\right|+K\\
\\
\\
Ln\left|\frac{1}{a}\left(\sqrt[]{x^2+a^2} + x \right) \right|+k

Como dito anteriormente, fazendo com "-a²" só vai mudar o sinal do "a²" dentro da raiz.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Como calcular a integral indefinida por substituição

Mensagempor Therodrigou » Ter Ago 28, 2018 00:23

vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.