• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 06:46

Olá! o que deve fazer, na expressão a seguir, para que ela seja igual a -32

[(2-x)^4-16]/x

quando X tende a 0

Obrigado pela atenção!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Gebe » Qua Jun 20, 2018 18:35

Ja que substituindo o 0 (zero) na expressão obtemos uma indeterminação 0/0, podemos utilizar a regra de l'Hopital.
Assim o LIMITE da expressão é igual ao da expressão com o numerador e o denominador derivados, ou seja:

\lim_{x\rightarrow0}\frac{(2-x)^4-16}{x}=\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}}


Resolvendo então temos:
\lim_{x\rightarrow0}\frac{ \frac{d\left((2-x)^4-16 \right)}{dx} }{\frac{d\left(x \right)}{dx}} = \lim_{x\rightarrow0}\frac{4*(2-x)^3*(-1)}{1}=\\
=\lim_{x\rightarrow0}-4(2-x)^3=-4*(2-0)^3=-4*8=-32

Espero ter ajudado, se ficar alguma duvida na resolução mande msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Qual o limite de [(2-x)^4-16]/x quando X tende a 0

Mensagempor Therodrigou » Qua Jun 20, 2018 22:54

vlw!
Therodrigou
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Jun 20, 2018 06:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59