• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivação impliitaa

derivação impliitaa

Mensagempor luccahm » Seg Jun 11, 2018 18:01

seja y f x uma função dada pela implicitamente pela questao x²+xy+y² = 3. admitindo f derivavel, determine as possiveis retas tangentes ao gráfico de f que são normais à reta x-y+1=0.
Eu tentei mais n consegui começar alguem pode me ajudar a fazer
luccahm
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 11, 2018 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciencia da computação
Andamento: cursando

Re: derivação impliitaa

Mensagempor nakagumahissao » Dom Jun 17, 2018 08:45

Faz um bom tempo que não tenho usado o Cálculo, mas creio que a solução para o problema seja o seguinte:

Em primeiro lugar, se f é derivável e as retas tangentes de f (dy/dx) são normais à reta x - y + 1 = 0, ou seja, são perpendiculares à esta reta, então, a declividade dessa reta será igual à equação das retas tangentes de f. Em outras palavras, diferenciando-se implictamente a equação desta reta, teremos:

[1]
x - y + 1 = 0 \Rightarrow 1 - \frac{dy}{dx} + 0 = 0  \Rightarrow \frac{dy}{dx} = 1

Diferenciando-se agora f, teremos:

{x}^{2}+xy+ {y}^{2} = 3 \Rightarrow 2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0

Trabalhando um pouco o resultado acima, teremos:

\frac{dy}{dx}\left(x + 2y \right) = -y - 2x \Rightarrow \frac{dy}{dx} = -\frac{\left(y + 2x \right)}{2y + x}

Logo, igualando-se ao que obtivemos em [1], teremos:

\frac{dy}{dx} = -\frac{\left(y + 2x \right)}{2y + x} = 1 \Rightarrow -(y + 2x) = 2y + x \Rightarrow -3y = 3x

\Rightarrow y = -x

Que é a equação que procurávamos.


\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}