• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com 2 variáveis

Limites com 2 variáveis

Mensagempor rstoque » Seg Jun 04, 2018 17:29

Estou com uma dúvida a respeito da resolução deste limite, pois quando eu tento resolvê-lo eu me confundo na hora de utilizar produtos notáveis no numerador.

\lim_{(x,y) \rightarrow \ (1,1)}{\frac{(x-1)^{4/3}-(y-1)^{4/3}}{(x-1)^{2/3}+(y-1)^{2/3}}}

Eu poderia desmembrar o numerador desta função assim...
\frac{(x-1)^{2/3}-(y-1)^{2/3}\cdot (x-1)^{2/3}+(y-1)^{2/3}}{(x-1)^{2/3}+(y-1)^{2/3}} ???

estou agarrado nessa resolução porque não estou concordando com ela, mas ao mesmo tempo ela faz sentido aff

desde já agradeço pessoal, abraços
rstoque
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 04, 2018 17:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.