• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por partes

Integral por partes

Mensagempor liviatoniolo222 » Seg Mai 21, 2018 22:54

Não estou conseguindo sair dessa questão.

∫ t. sec-¹(t)dt

O exercício pede para que seja feito por integração por partes

Fiz a integração usando ∫udv= u.v -∫vdu

e cheguei a isso \int t. {sec}^{-1}.\left(t \right) dt={sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\int\frac{{t}^{2}}{2}.\frac{dt}{\sqrt{1-{t}^{2}}}

depois disso eu não soube mais o que fazer, meu professor disse que eu teria que achar a identidade trigonométrica e fazer com que t seja igual a sen (u) mas eu não entendi como e nem porquê eu devo fazer isso
Anexos
esddfhgj.png
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando

Re: Integral por partes

Mensagempor Gebe » Ter Mai 22, 2018 10:26

Nao lembrava mais como fazia este tipo de questão. Dei uma olhada nos meus materiais antigos na parte de substituição trigonometrica (coloco uma parte em anexo) e acho que tua questão cai no caso do primeiro exemplo do anexo, ficando assim:

Sem título.png


\\
\sqrt{a^2-u^2}=\sqrt{1-t^2}\\
\\
a=1\\
u=t\\
\\
Sendo \;assim:\\
\sqrt{1-t^2}=1cos(\theta)\\
\\
t=1sen(\theta)\\
\\
dt=1cos(\theta)d\theta
\\
\\
Continuando \;a\; integral:
\\
{sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\int\frac{{t}^{2}}{2}.\frac{dt}{\sqrt{1-{t}^{2}}}\\
\\
\\
{sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\int\frac{{sen(\theta)}^{2}}{2}.\frac{cos(\theta)d\theta}{cos(\theta)}}}\\
\\
{sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\int\frac{{sen(\theta)}^{2}}{2}.d\theta}}}\\
\\
{sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\left[\frac{\theta}{4}-\frac{sen(2\theta)}{4} \right]\\
\\
Voltando\;a\;substituição:\\
\\
{sec}^{-1}.\left(t \right).\frac{{t}^{2}}{2}-\left[\frac{sen^{-1}(t)}{4} -\frac{t*\sqrt{1-t^2}}{2}\right]

Acho que é isso, mas da uma boa conferida, qualquer duvida manda msg. Espero ter ajudado, bons estudos
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 148
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Integral por partes

Mensagempor liviatoniolo222 » Ter Mai 22, 2018 16:01

Fiz a mesma pergunta em um outro fórum e me disseram que eu confundi sec-¹ com sen-¹ pois a fórmula de sen-¹ é \frac{du}{dt} sen^{-1}= \frac{1}{\sqrt{u^{2}-1}}
e realmente de acordo com a tabela \frac{du}{dt} \sec ^{-1}= \frac{1}{|x|\sqrt{1-u^{2}}} seria a fórmula correta para sec-¹

Fiquei confusa
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando

Re: Integral por partes

Mensagempor liviatoniolo222 » Ter Mai 22, 2018 20:48

Conversando com um outro professor, ele sugeriu que usasse esse método.
Estaria correto?
Anexos
Sem título.png
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.