• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada taxa de variação - HELP Por favor

Derivada taxa de variação - HELP Por favor

Mensagempor vivik » Ter Mai 15, 2018 16:47

01 – Se dois resistores com resistências R1 e R2 estão conectados em paralelo, temos que a sua
resistência equivalente será calculada por:

1/req = 1/R1+1/R2

Se R1 e R2 estão aumentando a taxas de 0,03 ohm/s e 0,02 ohm/s, respectivamente, quão
rápido Req está variando quando R1 = 80 ohm e R2 = 100 ohm?

O que eu faço? Substituo R1 por 80ohm e R2 POR 100ohm?

Onde esse 0,03 e 0,02 entra? Eu sei que tem que derivar em relação ao tempo, mas não sei como.
vivik
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 15, 2018 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Redes de Computadores
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron